mvControls

MultiValue Database Bound Controls

Manual and Tutorial

(1999 Nathan Rector, Natec Systems

Table of Contents

1.1Chapter 1 MvControls Introduction

What do the mvControls work with?
1.1
About the Author
1.2
mvSession
2-1
Property Pages
2-2
mvSession Property Page
2-2
mvSession Color Property Page
2-3
Help Text
2-4
mvTextBox
3-1
Property Pages
3-2
mvTextBox Field Settings Property Page
3-3
mvTextBox Key Field Property Page
3-5
mvTextBox Default Property Page
3-6
mvTextBox Validation Property Page
3-8
mvTextBox Color Property Page
3-9
mvTextBox Font Property Page
3-9
Help Text
3-10
mvComboBox
4-1
Property Pages
4-2
mvComboBox Field Settings Property Pages
4-2
mvComboBox List Settings Property Pages
4-3
mvComboBox Key Field Property Pages
4-6
mvComboBox Default Property Pages
4-7
mvComboBox Validation Property Pages
4-7
mvComboBox Color Property Pages
4-10
mvComboBox Font Property Pages
4-10
Help Text
4-11
mvGrid
5-1
Property Pages
5-2
mvGrid Field Settings Property Pages
5-2
vGrid List Settings Property Pages
5-4
mvGrid Field Field Property Pages
5-5
mvGrid Default Property Pages
5-7
mvGrid Validation Property Pages
5-8
mvGrid Advanced Property Pages
5-9
mvGrid Color Property Pages
5-10
mvGrid Font Property Pages
5-10
Help Text
5-11
mvButton
6-1
Property pages
6-2
mvButton Property Pages
6-2
mvButton Host Programs Property Page
6-3
mvButton Color Property Pages
6-4
mvButton Font Property Page
6-4
Help Text
6-5
Chapter 7 mvListBox
7-1
Property Pages
7-2
mvListBox Field Settings Property Page
7-2
mvListBox List Settings Property Page
7-4
mvListBox Default Property Page
7-6
mvListBox Validation Property Page
7-7
mvListBox Color Property Page
7-8
mvListBox Font Property Page
7-8
Help Text
7-9
mvCheckBox
8-1
Peroprty Pages
8-2
mvCheckBox Field Settings Property Page
8-2
mvCheckBox Default Property Page
8-3
mvCheckBox Validation Property Page
8-3
mvCheckBox Font Property Page
8-5
mvCheckBox Color Property Page
8-6
Help Text
8-7
Chapter 9 FAQ – Frequently Asked Questions
9-19
Chapter 10 MvControls Tutorial
10-1

Chapter 1 MvControls Introduction

The mvControls are Visual Basic Custom Controls that bind the standard Visual Basic control to the MultiValue Database. The mvControls allow a developer to create Visual Basic programs using MultiValue data quickly and easily. The mvControls include basic validation functions as well as the ability to call host BASIC programs during either Default or Validation checks.

The mvControls work together to help keep information updated and keep the user from saving information they shouldn’t.

The mvControls consist of the following:

	 mvSession
	The mvSession control is used to define the connection information needed to connect to the MultiValue Database

	mvTextBox
	The mvTextBox works like the standard Visual Basic TextBox

	MvComboBox
	The mvComboBox works like the standard Visual Basic ComboBox. It will allow the user to select data from a drop down list that was generated by the host system.

	mvGrid
	The mvGrid allows a developer to create a multivalue input control similar to a “scrolling multivalue window” commonly seen in MultiValue BASIC.

	mvButton
	The mvButton is used to write the information back to the MultiValue Database. The mvButton will verify that the information is entered correctly in the other associated controls before allowing the user to activate it.

	mvLabel
	The mvLabel works like the standard Visual Basic Label. It will display MultiValue information in a read-only format and will not allow the user to access it.

	mvListBox
	The mvListBox works like the standard Visual Basic ListBox. It gives the user the ability to select from a group of items, derived from either a specific record or from a select list. It will allow the user to select one or more items from the list and store the results in a multi-value format.

	mvCheckBox
	The mvCheckBox works like the standard Visual Basic CheckBox.

What do the mvControls work with?

The mvControls currently work with the following Objects:

WinLink32

The mvControls can be purchased from:

Via Systems

660 Southpointe Court, Suite 200

Colorado Springs, CO 80906

Toll Free Phone: (888) TEAM VIA (832-6842)

Phone: (719) 579-6800

 Customer Support: (719) 579-6800 x3

 Fax: (719) 576-7246

 Email: info@via.com

http://www.via.com
About the Author

Nathan Rector is the President of Natec Systems. Natec Systems has been providing solutions to the Multi-Value market for 8 years. Nathan is a feature author for International Spectrum’s “Tech Tips”.

Natec Systems has worked with integrating Multi-Value data into Windows and the Internet. They work with Visual Basic, ODBC, as well as traditional MultiValue BASIC.

For more information on Natec Systems or custom applications, contact:

Natec Systems

1685 Sutter Road

McKinleyville, Ca 95519

Phone: 707-443-6716
Fax: 707-839-4315

Email: nater@northcoast.com
http://www.northcoast.com/~nater
Chapter 2 [image: image1.png]mvSession

The mvSession control is used to gather the information needed to create a connection to the MultiValue database.

If a developer is only using one database, there only needs to be one session control on each form.

If a developer needs to connect to multiple MultiValue database, then more than one mvSession control can be placed on your Visual Basic form.

When the Session control is placed on the Form in design mode, an Icon will display on the screen. This icon will not be visible at Run-time.

The mvSession control holds global information about the connection and how the controls associated with it will act. The following are a sample of what the control holds:

ErrorColor

- the color of all controls that have been flagged as erred

HostName

- the Winlink32 Host Name to connect to

MandatoryColor
- the color of all mandatory fields

NoAutoUpdate
- Is the auto refresh turned on or off

OsType

- the type of Database the controls are connected to

WindowsKeyMapping
- use Windows Key mapping or MultiValue Key Mapping

Connect

- Connect to the Database

Disconnect

- Disconnect from the Database

SessionParent
- Holds the Base objects used to make the connection

The Connect and Disconnect methods are optional. If a connection to the database has not already been made when the other mvControls are activated, then a connection will be made automatically. If the mvControls created the session, then they will disconnect the session when the program is terminated.

Property Pages

[image: image2.png]mvSession Property Page

Windows Key Mapping
- This check box is used to decide if the developer wants the user to use windows default keys (Tab and Shift-Tab) or use MultiValue keys (RETURN and ESC) to move between controls.

This allows the developer to write a windows program that will use the RETURN key to move to the next field of input and the ESC key to move to a previous field of input the same as programs would work on a dumb terminal. Even if Windows Key Mapping is not turned off (not checked), the Tab and Shift-Tab are still available.

No Auto Update
- This check box is used to turn on or off the auto updating of changed fields. When a record is read, or when a control uses information supplied by a different control (for example a correlative in a mvLabel), the mvControls will automatically redisplay the information in the associated fields. If you turn the Auto update off, these functions will not longer happen unless the developer manually runs the Refresh methods supplied with each control.

One reason for turning the Auto Updating off is to speed up screen display. Instead of a control refresh each time a value changes, the developer can control when the refreshes happen.

Connection Type
- There may or may not be a list of connection types displayed in this area depending on which license of the controls the developer is working with. There is also another window that displays the information needed to login with, such as connection names and account names.

This window will change based on the connection type the developer chooses. If there is no “Connection Type” window and there is no additional window asking for connection information, then your version of the mvControls is not licensed for that machine.

mvSession Color Property Page

[image: image3.png]
Error Color
- Each mvControl has a property called ErrorFlag. This property allows the developer to flag a control as having an error. When ErrorFlag is set to True, then the color of the control changes to whatever color ErrorColor is set to. By default, ErrorColor is red.

Mandatory Color
- Some mvControls have the ability to be flagged as mandatory inputs. When they are, the control turns the color that is set in MandatoryColor. This allows the user to know which fields of input are required. By default, MandatoryColor is Yellow.

Help Text

MandatoryColor Propertyxe "AMC property"
Color of mandatory fields

Applies To
mvSession control

Syntax
object.MandatoryColor {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvSession control

	value
	A color value in Hex or Windows defaults such as vbTextBackGround. Default color is yellow.

Description
MandatoryColor is used to assign the color value associated with mandatory fields on the form. This allows a user to glance at the form and know which fields are required before they can save the data.

See Also
ErrorColor
Example
This example shows how to set the mandatory color. This value is normally set at design time, but can be changed at run time.

mvSession1.MandatoryColor = vbButtonFace

ErrorColor Propertyxe "AMC property"
Sets the color of all the fields that have errors in them.

Applies To
mvSession control

Syntax
object.AMC {= value}
	Part
	Description

	object
	Object expression that evaluates to a mvSession Control.

	value
	A color value in Hex or Windows defaults such as vbTextBackGround. Default color is red.

Description
If a control or field has been flagged with an error, the ErrorColor is used. This allows the user to see all the fields that need to be corrected before they can save the data.

See Also
MandatoryColor
Example
This example shows how to set the error color. This value is normally set at design time, but can be changed at run time.

mvSession1.ErrorColor = vbBlue

WindowsKeyMapping Propertyxe "AMC property"
Sets the value that controls the type of key mapping the developer wants.

Applies To
mvSession Control

Syntax
object.WindowsKeyMapping {= true/false}
	Part
	Description

	object
	Object expression that evaluates to a mvSession Control.

	value
	True/False

Description
WindowsKeyMapping is a true/false property. It controls how the RETURN and ESC keys respond in the controls. False is the default.

True causes the controls to respond to the RETURN and ESC keys just like any other Windows program. RETURN and ESC press buttons if the buttons have been set to Default or Cancel.

False causes the controls to respond to the RETURN and ESC key just like a terminal. RETURN causes the focus to be sent to the next control or field just as if the TAB key was pressed. The ESC acts just like an ALT-TAB.

Example
This property is normally set at Design time, but can be changed at Run time

MvSession1.WindowsKeyMapping = False

NoAutoUpdate Propertyxe "AMC property"
Turns the Auto Update of the data in the controls on or off.

Applies To
mvSession control

Syntax
object.NoAutoUpdate {= true/false}
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	value
	True/False

Description
NoAutoUpdate specifies what happens when data is changed in controls. The default is False.

True requires the developer to refresh each control separately using the Refresh method of each control.

False causes the controls to be updated automatically when a new record is read or an associated field or control is changed.

Example
This property is rarely changed, but there are times when resources can be better used by turning the Auto Update off.

MvSession1.NoAutoUpdate = False

OsType Propertyxe "AMC property"
Specify the type of Database the controls connect to.

Applies To
mvSession Control

Syntax
object.OsType {= value}
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	value
	Integer specifying the type of database or set of database objects that are used to connect to the database.

Description
OsType is a key value and is required. It tells the controls which database or set of database objects that the controls are connecting to or with.

Look at the Property Page for the Session control to see which database or set of database objects are available for developers to use.

Once the database has been connected to, this value can not be changed.

Example
MvSession1.OsType = osWinLink32
Extract Methodxe "AMC property"
Extract a specific value from a dynamic array

Applies To
mvSession control

Syntax
value = object.Extract(KeyId,Amc{,Vmc{,Smc}})
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	value
	Returns a string from the dynamic array position specified by AMC, VMC, and SMC.

KeyId is unique value that defines the dynamic array. This can also be the control name of a Key Field control.

Description
This method is used to return a value from a dynamic array just like MultiValue BASIC. It returns a String value for the positions specified in AMC, VMC, and SMC.

Developers can access values from a dynamic array read from Key Field control.

Example
This example shows how to extract data from an existing dynamic array that is been read in from the Key Field control: CustNo

Dim CustName As String

CustName = mvSession1.Extract(“CustNo”,1)

Replace Methodxe "AMC property"
Replaces a value in an existing Dynamic Array

Applies To
mvSession control

Syntax
object.Extract(KeyId,Value,Amc{,Vmc{,Smc}})
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	value
	A string to be set in a dynamic array position specified by AMC, VMC, and SMC.

KeyId is unique value that defines the dynamic array. This can also be the control name of a Key Field control.

Description
This method is used to set a value from a dynamic array just like MultiValue BASIC. It set a value in the positions specified in AMC, VMC, and SMC.

Developers can change values in a dynamic array read from a Key Field control. If the Auto Update is on and the value changed happens to be a field or control on a form, then that value in the control changes automatically.

Example
This example replaces data in an existing dynamic array that has been read in from the Key Field control: CustNo

Dim CustName As String

CustName = “Joe Bob”

Call mvSession1.Extract(“CustNo”, CustName, 1)

Insert Methodxe "AMC property"
Inserts a value in an existing Dynamic Array

Applies To
mvSession control

Syntax
object.Insert(KeyId,Value,Amc{,Vmc{,Smc}})
	Part
	Description

	Object
	Object expression that evaluates to a mvSession control.

	Value
	A string to be set in a dynamic array position specified by AMC, VMC, and SMC.

KeyId is unique value that defines the dynamic array. This can also be the control name of a Key Field control.

Description
This method is used to insert new values into the dynamic array based on the specified AMC, VMC, and SMC.

Example
This example inserts data in an existing dynamic array that is been read in from the Key Field control: CustNo

Dim CustName As String

CustName = “Joe Bob”

Call mvSession1.Insert(“CustNo”, CustName, 1)

Delete Methodxe "AMC property"
Delete a specific value from a dynamic array

Applies To
mvSession control

Syntax
object.Delete(KeyId,Amc{,Vmc{,Smc}})
	Part
	Description

	Object
	Object expression that evaluates to a mvSession control.

	Value
	Returns a string from the dynamic array position specified by AMC, VMC, and SMC.

KeyId is unique value that defines the dynamic array. This can also be the control name of a Key Field control.

Description
This method deletes values from the dynamic array based on the AMC, VMC, and SMC positions.

Example
This example deletes data from an existing dynamic array that is been read in from the Key Field control: CustNo

Call mvSession1.Delete(“CustNo”,1,1)

Connect Methodxe "AMC property"
Connect is used to connect to the database

Applies To
mvSession control

Syntax
object.Connect
	Part
	Description

	Object
	Object expression that evaluates to a mvSession control.

	
	

Description
This method is used to manually connect to the database. The controls automatically connect to the MultiValue Database when the form displays, but there may be times when a developer wants to access the controls before a connection has been made.

If a connection has already been made, then an error AlreadyConnected is returned.

When a connection is made, the Event ConnectionEstablished is fired. If the connection failed, then the Event ConnectionError(ErrMsg) is fired.

Example
This example shows how to connect to the database manually.

Sub Form1_Load

mvSession1.Connect

End Sub

Private Sub MvSession1_ConnectionEstablished()

Msgbox “Connection Has be Made”

End Sub

Private Sub mvSession1_ConnectionError(Byval ErrMsg as String)

MsgBox “Error when making Connection: “ & ErrMsg

End Sub

Disconnect Methodxe "AMC property"
Disconnect is used to disconnect from the database

Applies To
mvSession control

Syntax
object.Connect
	Part
	Description

	Object
	Object expression that evaluates to a mvSession control.

	
	

Description
This method is used to manually disconnect from the database. The Controls automatically disconnect from the database when the form with the mvSession control on it gets unloaded. However, there may be times when the developer wants to manually disconnect from the database.

Example
This example shows how to disconnect to the database manually.

 mvSession1.Disconnect

mvRead, mvReadU Methodxe "AMC property"
Read a specific record from the host

Applies To
mvSession control

Syntax
object.mvRead(KeyId,RecordNumber,FileName)
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	KeyId
	KeyId is unique value that defines the dynamic array. This can also be the control name of a Key Field control.

	RecordNumber
	RecordNumber is the Record Number or Key Value for a specific item

	FileName
	FileName is the file name to read from

Description
mvRead and mvReadU reads a specific value from the database and allows the user to access the dynamic array created from the read with the Extract, Insert, and Delete methods in the mvSession Control.

Example
This example shows how to read a record form the CUST file and extract AMC 1:

Dim CustName As String

MvSession1.mvRead “CustNo”,”5912”,”CUST”

CustName = mvSession1.Extract(“CustNo”,1)

mvWrite, mvWriteU Methodxe "AMC property"
Write a specific record to the host

Applies To
mvSession control

Syntax
object.mvWrite(KeyId,RecordNumber,{FileName})
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	KeyId
	KeyId is unique value that defines the dynamic array. This can also be the control name of a Key Field control.

	RecordNumber
	RecordNumber is the Record Number or Key Value for a specific item

	FileName
	FileName is the file name to write to. This field is Optional.

Description
mvWrite and mvWriteU writes a specific dynamic array that was generated by either a Key Field Control or using the mvRead or mvReadU methods on the mvSession Control.

Example
This example shows how to write a record to the CUST file:

Dim CustName As String

MvSession1.mvRead “CustNo”,”5912”,”CUST”

mvSession1.Replace(“CustNo”,”Joe BoB”,1)

mvSession1.mvWrite “CustNo”,”5912”

mvRelease Methodxe "AMC property"
Releases a ReadU or WriteU lock

Applies To
mvSession control

Syntax
object.mvRelease(KeyId)
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	KeyId
	KeyId is unique value that defines the dynamic array. This can also be the control name of a Key Field control.

Description
mvRelase releases an item lock created when a mvReadU or mvWriteU is done.

Example
This example shows how to release an item Lock:

Dim CustName As String

MvSession1.mvReadU “CustNo”,”5912”,”CUST”

MvSession1.mvRelease “CustNo”

DCount Methodxe "AMC property"
DCount for a specific dynamic array

Applies To
mvSession control

Syntax
value = object.Dcount(KeyId,Delimit,{Amc{,Vmc{,Smc}}})
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	value
	Returns the number of items in the string based on the number of times the Delimit is found in the dynamic array position specified by AMC, VMC, and SMC.

KeyId is unique value that defines the dynamic array. This can also be the control name of a Key Field control.

Description
This method is used to return the Dcount value for a dynamic array just like in MultiValue BASIC. It returns a long number value for the number of items in the string based on the number of times Delimit is found in array position specified in AMC, VMC, and SMC.

Developers can access a dynamic array read from a Key Field control or from a mvRead or mvReadU.

Example
This example shows how to find the number of Value marks in a dynamic array:

Dim Num As Long

Num = mvSession1.DCount(“CustNo”,Chr(253),1)

Count Methodxe "AMC property"
Count for a specific dynamic array

Applies To
mvSession control

Syntax
value = object.Count(KeyId,Delimit,{Amc{,Vmc{,Smc}}})
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	value
	Returns the number of times the Delimit is found in the dynamic array position specified by AMC, VMC, and SMC.

KeyId is unique value that defines the dynamic array. This can also be the control name of a Key Field control.

Description
This method is used to return the Count value for a dynamic array just like in MultiValue BASIC. It returns a long number value for the number of times Delimit is found in array position specified in AMC, VMC, and SMC.

Developers can access a dynamic array read from a Key Field control or from a mvRead or mvReadU.

Example
This example shows how to find the number of Value marks in a dynamic array:

Dim Num As Long

Num = mvSession1.Count(“CustNo”,Chr(253),1)

ExecuteSelect Methodxe "AMC property"
Executes a Select List

Applies To
mvSession control

Syntax
object.ExecuteSelect(SelectListName,TclSentence)
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	SelectListName
	SelectListName is unique value that defines the select list.

Description
This method is used to execute a TCL command that returns an active select list. The select list can then be read with the ReadNext method.

Example
This example shows how to use the ExecuteSelect, ReadNext, and CloseSelect:

Dim Id As String

MvSession1.ExecuteSelect “CustList”,”SELECT CUST”

Do while mvSession1.ReadNext(Id)

Debug.print Id

Loop

MvSession1.CloseSelect “CustList”

ReadNext Methodxe "AMC property"
Does a ReadNext on a SelectList

Applies To
mvSession control

Syntax
value = object.ReadNext(SelectListName,Id)
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	value
	Returns a True value as long as there is an Id to be read from the select list. Returns False if there is no Id read or if at the end of the select list.

Description
This method is used to read the next value from a select list. It returns the value in the Id variable. If there are no more values to be read from the select list, then ReadNext returns False; otherwise, ReadNext returns True..

Example
This example shows how to use the ExecuteSelect, ReadNext, and CloseSelect:

Dim Id As String

MvSession1.ExecuteSelect “CustList”,”SELECT CUST”

Do while mvSession1.ReadNext(“CustList”,Id)

Debug.print Id

Loop

MvSession1.CloseSelect “CustList”

CloseSelect Methodxe "AMC property"
Closes and Destroys a Select List

Applies To
mvSession control

Syntax
object.CloseSelect(SelectListName)
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	SelectListName
	SelectListName is unique value that defines the select list.

Description
This method is used to close and destroy a select list. It is included for convenience.

Example
This example shows how to use the ExecuteSelect, ReadNext, and CloseSelect:

Dim Id As String

MvSession1.ExecuteSelect “CustList”,”SELECT CUST”

Do while mvSession1.ReadNext(Id)

Debug.print Id

Loop

MvSession1.CloseSelect “CustList”

CallProg Methodxe "AMC property"
Calls a MultiValue BASIC program

Applies To
mvSession control

Syntax
object.CallProg(ProgName,{{arg1}…, arg12})
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	ProgName
	ProgName is the name of the program to call on the Host.

	Arg1-arg12
	Arg1 – arg12 are the arguments for the calling program.

Description
This method is used to call a MultiValue BASIC program on the host. It allows you to pass up to 12 arguments. This method works like calling a subroutine in MultiValue BASIC. If an argument value is changed in the subroutine, then the changed value is passed back through the same argument.

Example
This example shows a subroutine being called:

Dim CustNo as String

Dim Error as String

MvSession1.CallProg “CUST.SUB1”,”1”, CustNo,””,””,Error

Execute Methodxe "AMC property"
Executes a TCL Command

Applies To
mvSession control

Syntax
object.Execute (TclSentence,Capture, {Returning})
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	TclSentence
	TclSentence is the TCL command to be executed.

	Capture
	Capture returns the output captured from the execute

	Returning
	Returning shows the error numbers returned when the Execute is done.

Description
This method is used to execute a TCL command and returns the Captured output as well as the error number in Returning.

Example
This example shows how execute a TCL Command:

Dim Output As String

MvSession1.Execute ”LIST CUST”, Output

OConv Methodxe "AMC property"
Process an Oconv statement

Applies To
mvSession control

Syntax
value = object.Oconv(Value,Conversion)
	Part
	Description

	object
	Object expression that evaluates to a mvSession control.

	value
	Returns the value that has been converted.

Description
This method is used to process an Oconv Statement. It allows a developer to process any valid Conversion statement that their Host system supports.

Example
This example shows how to use Oconv

Dim Value As String

Value = mvSession1.OConv(“123456”,”MR2,”)

IConv Methodxe "AMC property"
Process an Iconv statement

Applies To
mvSession control

Syntax
value = object.Oconv(Value,Conversion)
	Part
	Description

	Object
	Object expression that evaluates to a mvSession control.

	Value
	Returns the value that has been converted.

Description
This method is used to process an Iconv Statement. It allows a developer to process any valid Conversion statement that their Host system supports.

Example
This example shows how to use Iconv

Dim Value As String

Value = mvSession1.IConv(“123456”,”MR2,”)

mvIndex Methodxe "AMC property"
Emulation of the MultiValue BASIC Index command

Applies To
mvSession control

Syntax
value = object.mvIndex(String,SubString,Occur)
	Part
	Description

	Object
	Object expression that evaluates to a mvSession control.

	Value
	Returns the position of SubString in String based on the number of Occur.

Description
This method is used to enhance Visual Basic with useful command found in MultiValue BASIC.

Example
This example shows how to use mvIndex:

Dim Pos As String

Pos = mvSession1.mvIndex(“Joe Bob”,”Bob”,1)

mvField Methodxe "AMC property"
Emulation of the MultiValue BASIC Field command

Applies To
mvSession control

Syntax
value = object.mvField(String,Delimit,Pos)
	Part
	Description

	Object
	Object expression that evaluates to a mvSession control.

	Value
	Returns the value in String delimited by Delimit for the position supplied by Pos.

Description
This method is used to enhance Visual Basic with useful command found in MultiValue BASIC.

Example
This example shows how to use mvField:

Dim FirstName As String

FirstName = mvSession1.mvField(“Joe Bob”,” “,1)

RQM Methodxe "AMC property"
Emulation of the MultiValue BASIC RQM command

Applies To
mvSession control

Syntax
object.RQM({sec})
	Part
	Description

	Object
	Object expression that evaluates to a mvSession control.

	Sec
	Sleeps for the number of seconds specified. If nothing is supplied, then it sleeps for 1 second.

Description
This method is used to enhance Visual Basic with useful command found in MultiValue BASIC.

Example
This example shows how to use RQM:

mvSession1.RQM

mvDate Methodxe "AMC property"
Returns an Internal Date

Applies To
mvSession control

Syntax
value = object.mvDate()
	Part
	Description

	Object
	Object expression that evaluates to a mvSession control.

	Value
	Returns today’s date in internal format.

Description
This method is used to enhance Visual Basic with useful command found in MultiValue BASIC.

Example
This example shows how to use mvDate:

Dim Today As Long

Today = mvSession1.mvDate

mvTime Methodxe "AMC property"
Returns an Internal Time

Applies To
mvSession control

Syntax
value = object.mvTime()
	Part
	Description

	Object
	Object expression that evaluates to a mvSession control.

	Value
	Returns the current time in internal format.

Description
This method is used to enhance Visual Basic with a useful command found in MultiValue BASIC.

Example
This example shows how to use mvTime:

Dim CurTime As Long

CurTime = mvSession1.mvTime

Chapter 3 [image: image4.png]mvTextBox

The mvTextBox is similar to the Visual Basic TextBox control (except, of course, the mvTextBox is bound to a MultiValue database). The mvTextBox allows a developer to place a standard input control on a form, and have the data in the control be read from, and update to, a dynamic array.

There are 2 modes to the mvTextBox-- single line mode and multi-line mode. Multi-line mode allows the developer to basically put a simple word processor on the form and have the data input saved as multi-value or subvalue lines (depending on the configuration information the developer defined for the control).

The mvTextBox has a label function that allows a developer to assign a label to the control. When the control is moved, the label will go with it. The label can be placed above, below, to the left, or to the right of the actual textbox. The label is optional. If no label is specified, then only the text box will be displayed.

[image: image5.png]
The mvTextBox has basic validation control built into it. A Developer may define the type of input that is valid, e.g. Numeric, Time, or Date. A Developer can also specify a Host BASIC program to be run during both validation, and to generate a “default” value for the control.

[image: image6.png]
The mvTextBox can be defined as a Key Field. A Key Field is used to define which record is to be read from the MultiValue Database. There are two different types of Key Fields. The standard Key Field requires the user to input the record name to be read; the Select List Key Field allows a user to scroll back and forth through a select list using Arrow Buttons.

[image: image7.png]
[image: image8.png]
Property Pages

[image: image9.png]mvTextBox Field Settings Property Page

Key Field
- The Key Field is used to define an association with a control specified as a Key Field Control. A Key Field Control is a control that is used to capture a record number or id and read it from the Host.

If the developer wants this control to be a Key Field Control, and is not access the record number or id from a previously read record, then leave the Key Field blank and fill out the information found on the “Key Field” tab.

Field Name
- Field name is used if the developer wants to pull information from a dictionary name at run-time instead of manually entering the information at design-time. The control will pull the Conversion, Justification, Caption, and AMC/VMC/SMC from the dictionary item.

AMC
- This is the Attribute number to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

VMC
- This is the multivalue line to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

SMC
- This is the Subvalue line to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

Mandatory
- This check box is used to mark the control as mandatory. When the form is run, then the control will turn the color found in the mvSession property MandatoryColor, and will not allow the data to be saved until this control has a value.

ReadOnly
- This check box causes the control to become read only. The user can still enter the control, but it will not allow them to change the information. It will allow the user to select and copy the information though.

MultiLine
- This is used to define the text box as allowing more than one line of data. This is hand if the developer wishes to give the user a simple word processor type field to enter information in.

Each line entered will be saved as either a multivalue line or subvalue line depending on the values of VMC and SMC. If either of these properties have a 0 (zero) in them, then that is the delimiter that control will use for each line.

Auto Overwrite
- If this property is checked, then the control will select the information so the first key it will overwrite the data already in the control.

Justification
- The justification allows the developer to set justification of the display for this control: Left and Right are the current selections.

Max Length
- Max Length will keep the user from entering data longer that this value. If Max Length is 0 (zero), then the amount of data allowed is unlimited.

Caption
- This control has the option to have a caption or label displayed with it. If a Field Name was entered, the control will use the caption found in dictionary item.

This is helpful for when the control is moved, then the label will be moved with the control.

Location
- Location is used to define where the caption is place in relation to the control. The caption can be above, below, left or right of the control.

Caption Width
- The Caption Width is the number of characters the developer wants to display in the caption. This is useful when the developer wants to keep all the captions the same size to keep the control from looking jagged.

Data Type
- Data Type is used to define the type of data allowed in the control. This is used for basic validation and keeps the user from entering incorrect data. Some of the data types are: Numeric, Date, Time, Integer, and normal Alphanumeric.

Conversion
- Conversion is used to convert the data from a raw format of the dynamic array to an output format for the user to work with and then back again; for example, a dollar conversion.

Most any conversion that will work with an OCONV and ICONV statement can be used.

mvTextBox Key Field Property Page

[image: image10.png]
Key Field
- If the developer wants to make this control a Key Field, then check the box.

File Name
- This is the file name data will be read from.

Session
- This is the session control to use to access the Host. Since the mvControls are designed to be able to access more than one Host system, the controls must know which mvSession control to use.

Lock when Read
- This check box is used to cause the control use a ReadU instead of a standard Read. A ReadU will lock the record upon reading the item.

Display Lookup Button
- If this box is checked, a Lookup button will be displayed next to the control. This button currently doesn’t do anything but fire the Lookup Event of the control. Any lookup screen will have to be created by the developer.

Lock Control After Read
- If this box is checked, the control will become read-only until the data is written back to the host. This keeps the data in the control from being changed after the read is done.

Must Exist Error Msg
- The developer can create a custom message to display to the user if the record must exist and the user has entered a new record.

Must be new Msg
- The developer can create a custom message to display to the user if the record must be new and the user has entered an existing record.

Select List
- If a select list is entered, the control will only allow the record numbers or ids generated from the select list to be accessed. It will allow the user to scroll back and forth through the list using arrow buttons that will be displayed on either side of the control.

Read Type
- Read types allow the developer to control the kind of record numbers or ids are entered. There are three read types: Must be new, Must Exist, and Either.

The Read Type “Must be new” will only allow a new record number or id to be entered. The Read Type “Must Exist” will only allow an existing record to be entered. The Read type “Either” will allow the user to enter either an existing or new record number or id.

mvTextBox Default Property Page

[image: image11.png]Default Program
- This property will allow the developer to call a host BASIC program when the user first enters the control.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

 1 – Error. Will set ErrorFlag property to True

 2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

mvTextBox Validation Property Page

[image: image12.bmp]
Validation Program
- This property will allow the developer to call a host BASIC program when the user first leaves the control.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

 1 – Error. Will set ErrorFlag property to True

 2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

mvTextBox Color Property Page

[image: image13.bmp]Back Color
- This property is used to set the background color of the control

Fore Color
- This property is used to set the foreground color of the control

Caption Color
- This property is used to set the color of the caption

mvTextBox Font Property Page

[image: image14.png]
Caption Font
- Sets the font options for the caption

Font
- Sets the font options for the data portion of the control.

Help Text

AMC Propertyxe "AMC property"
Sets the Attribute Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.AMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the attribute position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the Attribute Mark Counter for the dynamic array the value of this control to be pulled from or placed into. It works the VMC and SMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
VMC and SMC
Example
This example shows how to use the AMC.

mvTextBox1.AMC = 1

VMC Propertyxe "AMC property"
Sets the Value Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.VMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the multi-value position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the Value Mark Counter for the dynamic array the value of this control to be pulled from or placed into. It works the AMC and SMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
AMC and SMC
Example
This example shows how to use the VMC.

mvTextBox1.VMC = 1

SMC Propertyxe "AMC property"
Sets the SubValue Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.SMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or sets the subvalue position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the SubValue Mark Counter for the dynamic array the value of this control to be pulled from or placed into. It works the AMC and VMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
AMC and VMC
Example
This example shows how to use the SMC.

mvTextBox1.SMC = 1

KeyId Propertyxe "AMC property"
The name of the Control that is labelled as the Key Field

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.KeyId {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the name of the Key Field control.

Description
This property is used to define the name of the control on the form that is set as the key field control. Normally this property is set during design time, but can be changed at run time.

Example
This example shows how to use the KeyId.

mvTextBox1.KeyId = CustNo

DictItemName Propertyxe "AMC property"
Dictionary Item Name to pull the primary control information from.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.DictItemName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the Dictionary Item Name to pull the primary control information from.

Description
This property is used to return or set the dictionary name to pull primary control information from. The control pulls the AMC, Conversion, Label, and Justification.

This property is read-only at Run Time.

See Also
AMC, Conversion, Label, and Justification
Example
This example shows how to use the DictItemName.

If mvTextBox1.DictItemName = “CustNo” then

MvTextBox1.Justification = “R”

End If

Mandatory Propertyxe "AMC property"
Sets the control as Mandatory.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Mandatory {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Sets True/False if the control is mandatory.

Description
This property is used set the control as required. If the control has been set to mandatory, then the controls background color turns the color is specified in the mvSession control’s MandatoryColor property.

True indicates the control is required. False specifies that the control is not required.

Example
This example shows how to use the Mandatory Property.

mvTextBox1.Mandatory = True

MaxLength Propertyxe "AMC property"
Sets the controls max input length.

Applies To
mvTextBox, mvComboBox, mvListBox, and mvGrid controls

Syntax
object.MaxLength {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, or mvGrid control

	Value
	Sets the maximum length allowed for this control.

Description
This property sets the maximum length of input the control is allowed. If the max length is zero, then the input length is unlimited.

Example
This example shows how to use the MaxLength Property.

mvTextBox1.MaxLength = 10

DataType Propertyxe "AMC property"
Sets the controls Data Type

Applies To
mvTextBox, mvComboBox, and mvGrid controls

Syntax
object.DataType {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvGrid control

	Value
	Sets the controls data type. This helps control basic validation.

Description
This property is used to set the control’s Data Type. The Data Type is used to help control basic validations, such as, numeric only or Date entry.

There are several data types the controls can be set to. There are some samples of what can be done:

Regular
– accept anything

Numeric
– accepts only numbers

Date
– accepts only characters associated with a date. Saves input an internal date

Time
– accepts only characters associated with a time. Saves input as an internal time
Example
This example shows how to use the DataType Property.

mvTextBox1.DataType = mvRegular

Justification Propertyxe "AMC property"
Sets the controls justification.

Applies To
mvTextBox, mvComboBox, mvListBox, mvGrid, and mvLabel controls

Syntax
object.Justification {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvGrid, or mvLabel control

	Value
	L – Left or R- Right.

Description
Sets the control’s Justification: L – Left, R - Right.

Example
This example shows how to use the Justification Property.

mvTextBox1.Justification = “L”

Conversion Propertyxe "AMC property"
Sets the control’s Conversion Code.

Applies To
mvTextBox, mvComboBox, mvListBox, mvGrid, and mvLabel controls

Syntax
object.Conversion {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvGrid, or mvLabel control

	Value
	A valid Conversion Code.

Description
This property is used to specify the Conversion Code to use on the data. It is used to translate between internal data in the dynamic array to external data that the user sees. Please keep in mind this conversion code is used with both Oconv and Iconv.

Example
This example shows how to use the Conversion Property.

mvTextBox1.Conversion = “MR2”

ErrorFlag, ErrMsg Properties

Flags the control as an Error.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.ErrorFlag {= True/False}

Object.ErrMsg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets an error message.

Description
This property is used to flag the control as having an error. When the control is flagged as having an error, then the mvButton Control associated with the same Key control field becomes inactive.

ErrMsg is used to store a text version of what the error is.

This control is available at Run-time Only.

Example
This example shows how to use the ErrorFlag and ErrMsg Properties.

mvTextBox1.ErrorFlag = True

mvTextBox1.ErrMsg = “Testing Error Message”

CaptionLoc Propertyxe "AMC property"
Sets the location of the label associated with the control

Applies To
mvTextBox, mvComboBox, and mvListBox controls

Syntax
object.CaptionLoc {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvListBox control

	Value
	Sets the Location of the Label associated with the control. Valid values are mvLabelLeft, mvLabelRight, mvLabelTop, and mvLabelBottom

Description
This property sets the location of the label that is associated with the control. The Label can be positioned on the Top, Left, Right or Bottom of the control.

Example
This example shows how to use the CaptionLoc Property.

mvTextBox1.CaptionLoc = mvLabelLeft

CaptionWidth Propertyxe "AMC property"
Sets the control’s label width.

Applies To
mvTextBox, mvComboBox, mvListBox, and mvGrid controls

Syntax
object.CaptionWidth {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, or mvGrid control

	Value
	Sets the label width.

Description
This control is used to set the width of the label. If the value is –1 then the controls automatically sizes the label width to the size of the label text.

Example
This example shows how to use the CaptionWidth Property.

mvTextBox1.CaptionWidth = 10

CaptionFont Propertyxe "AMC property"
Sets the font information for the label

Applies To
mvTextBox, mvComboBox, and mvListBox controls

Syntax
object.CaptionFont {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox or mvListBox control

	Value
	Sets the label font characteristics.

Description
This control is used to set the label’s font characteristics. This includes the font size, font type, bold, underline, and italics.

Example
This example shows how to use the CaptionFont Property.

mvTextBox1.CaptionFont.Bold = True

CaptionColor Propertyxe "AMC property"
Sets the color the label is to be displayed in

Applies To
mvTextBox, mvComboBox, mvListBox controls

Syntax
object.CaptionColor {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvListBox control

	Value
	Sets color of the label’s text.

Description
This control is used to set the color of the label text

Example
This example shows how to use the CaptionColor Property.

mvTextBox1.CaptionColor = vbBlue

Caption Propertyxe "AMC property"
Sets the value for control’s associated label.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, and mvGrid controls

Syntax
object.Caption {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, or mvGrid control

	Value
	Sets the value to be displayed in the control’s associated label.

Description
This property sets the control’s associated label. If this is set to null, then no label displays.

Example
This example shows how to use the Caption Property.

mvTextBox1.Caption = “Cust #”

MultiLine Propertyxe "AMC property"
Specify if the control allows Multi-line Input.

Applies To
mvTextBox controls

Syntax
object.MultiLine {= True/False}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox control

	Value
	True or False

Description
This property sets the control to Multi-line input. The data input is saved with Value Marks or Subvalue marks depending on what has been specified in AMC, VMC, and SMC.

If VMC = 0 then, each line input is a Multi-value position.

If SMC = 0, then each line is a subValue mark.

If SMC and VMC have values, then the data is saved with CRLF delimiters.

Example
This example shows how to use the MultiLine Property.

mvTextBox1.MultiLine = True

DefaultProg Propertyxe "AMC property"
Specify a MultiValue BASIC program to be called at Default.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.DefaultProg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Name of the program.

Description
This property sets the name of the MultiValue BASIC program to call at Default.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

1 – Error. Will set ErrorFlag property to True

2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

Example
This example shows how to use the DefaultProg Property.

mvTextBox1.DefaultProg = “CUST.SUB1”

ValidationProg Propertyxe "AMC property"
Specify a MultiValue BASIC program to be called at Validation.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, and mvGrid controls

Syntax
object.ValidationProg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, or mvGrid control

	Value
	Name of the program.

Description
This property sets the name of the MultiValue BASIC program to call at Validation.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

1 – Error. Will set ErrorFlag property to True

2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

Example
This example shows how to use the ValidationProg Property.

mvTextBox1.ValidationProg = “CUST.SUB1”

KeyField Propertyxe "AMC property"
Specifies if the control is a Key Field control.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.KeyField {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvLabel, or mvGrid control

	Value
	True/False

Description
This is used to specify if this control is a Key Field Control. A Key Field control is a control that reads a record from a file. There are associated properties that are needed to make this control a Key Field. Some are: Session, FileName, and ReadType.

Example
This example shows how to use the KeyField Property.

mvTextBox1.KeyField = True

mvTextBox1.FileName = “EMP”

mvTextBox1.Session = “mvSession1”

mvTextBox1.ReadType = mvMustExist

FileName Propertyxe "AMC property"
Sets the file name for a Key Field Control.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.FileName {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	Sets the file name that a record is read from.

Description
This property sets the file name that a record is read from.

Example
This example shows how to use the FileName Property.

mvTextBox1.KeyField = True

mvTextBox1.FileName = “EMP”

mvTextBox1.Session = “mvSession1”

mvTextBox1.ReadType = mvMustExist

ReadType Propertyxe "AMC property"
Sets the type of read that is allowed.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.ReadType {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	mvEither, mvMustBeNew, mvMustExist

Description
This property is used to set the type of read allowed. The values are: mvEither, mvMustBeNew, and mvMustExist.

mvEither allows both new and existing records to be input into the control.

mvMustBeNew only allows a record that does not currently exist in the file to be input into the control.

mvMustExist only allows a record that already exists on file to be input into the control.

Example
This example shows how to use the ReadType Property.

mvTextBox1.KeyField = True

mvTextBox1.FileName = “EMP”

mvTextBox1.Session = “mvSession1”

mvTextBox1.ReadType = mvMustExist

Session Propertyxe "AMC property"
Sets the name of the Session Control.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.Session {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	Sets the name of a mvSession control.

Description
This property sets the name of the session control that is to be used to connect to the database. This property is read-only once the connection has been made to the database. This property is typically only set or changed at design time.

Example
This example shows how to use the Session Property.

mvTextBox1.KeyField = True

mvTextBox1.FileName = “EMP”

mvTextBox1.Session = “mvSession1”

mvTextBox1.ReadType = mvMustExist

MustExistErrMsg Propertyxe "AMC property"
Set the error message to be displayed when a record is read and does not exist.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.MustExistErrMsg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	Sets the error message you want to display to the user.

Description
This property sets the error the user sees when they enter a record that does not exist. This error message only displays if the ReadType is mvMustExist.

Example
This example shows how to use the MustExistErrMsg Property.

mvTextBox1.MustExistErrMsg = “This employee does not exist!”

MustBeNewErrMsg Propertyxe "AMC property"
Sets the error message to be displayed if the record must be new.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.MustBeNewErrMsg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	Sets the error message displayed for the user.

Description
This property sets the error message the user receives if the record must be new and the user input an existing record. This error message only displays if ReadType is mvMustBeNew.

Example
This example shows how to use the MustBeNewErrMsg Property.

mvTextBox1.MustBeNewErrMsg = “You must input a new Employee record number”

ReadU Propertyxe "AMC property"
Specifies if a ReadU is to be done.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.ReadU {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	True/False

Description
This property specifies whether the control is to do a ReadU instead of a Read when the record is being read from the file. A ReadU locks the record until a new record is read or until this record is written to the file.

True indicates a ReadU. False specifies a Read.

Example
This example shows how to use the ReadU Property.

mvTextBox1.ReadU = True

LookupButton Propertyxe "AMC property"
Specifies if a Lookup Button displays.

Applies To
mvTextBox controls

Syntax
object.LookupButton {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox control

	Value
	True/False

Description
This property is used to specify if a Lookup Button is to be displayed next to the control. This Button is used to fire the Lookup Event. It does not do anything other than fire the Lookup Event when pressed. Anything that the developer wants displayed has to be coded by the developer.

Example
This example shows how to use the LookupButton Property.

mvTextBox1.LookupButton = True

SelectList Propertyxe "AMC property"
Sets a Select to scroll through.

Applies To
mvTextBox controls

Syntax
object.SelectList {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox control

	Value
	A TCL statement that generates an active select list.

Description
This property is used to specify a TCL statement that creates an active select list. This allows the user to scroll through a pre-defined set of record numbers, and only those record numbers.

Two arrow buttons display on the sides of the controls, allowing the user to scroll forwards and backward through the select. Only the values found in the select list are allowed as input.

Example
This example shows how to use the SelectList Property.

mvTextBox1.SelectList = “Select Cust with state=””CA”” “

mvTextBox1.ProcessSelectList

LockAfterRead Propertyxe "AMC property"
Causes the Control to become unalterable after the read.

Applies To
mvTextBox, mvComboBox, and mvGrid controls

Syntax
object.LockAfterRead {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvGrid control

	Value
	True/False

Description
This property specifies whether the control is to become unalterable after the read is done. If LockAfterRead is True, then once the record has been read, the control becomes read-only until the item has been written and/or cleared.

Example
This example shows how to use the LockAfterRead Property.

mvTextBox1.LockAfterRead = True

Overwrite Propertyxe "AMC property"
Causes the data in the control to become selected

Applies To
mvTextBox and mvComboBox controls

Syntax
object.Overwrite {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox or mvComboBox control

	Value
	True/False

Description
This property causes the data in the control to be selected. When a user enters a character while the data is selected, or highlighted in blue, it overwrites the current value in the control.

Example
This example shows how to use the Overwrite:

mvTextBox1.Overwrite = True

Text Propertyxe "AMC property"
Sets and Returns the value of the dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvGrid, and mvLabel controls

Syntax
object.Text {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the value of the control.

Description
This property is used to set or return the value of the control. When a program evaluates the value of Text, it is evaluating a value from the dynamic array as specified by AMC, VMC, and SMC.

If a value is set to Text, then that value goes directly into the dynamic array and updates the associated information, including other controls. If the control is a Key Field control, then the value input in Text is read from the file.

Keep in mind that this returns or sets the value in the dynamic array only. If a developer wants to change the value while the user is editing the current control’s data, the InputText property needs to be used. See InputText for more information.

See Also
InputText
Example
This example shows how to use the Text.

mvTextBox1.Text = “Joe”

InputText Propertyxe "AMC property"
Sets and Returns the value of the Control

Applies To
mvTextBox, mvComboBox, and mvGrid controls

Syntax
object.InputText {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvGrid control

	Value
	Returns or Sets the value of the control.

Description
This property is used to change the value of the control. It does not update the dynamic array, nor pull information from the dynamic array. It only updates and returns the value the user has input in the control.

This is handy when a developer wants to change the value input in the Change Event or the KeyPress Event.

See Also
Text
Example
This example shows how to use the InputText.

mvTextBox1.InputText = mvTextBox1.InputText & “ White”

BackColor Propertyxe "AMC property"
Changes the Background color.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.BackColor {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Color.

Description
This property is used to set the background color of the control

Example
This example shows how to use the BackColor.

mvTextBox1.BackColor = vbWindowsBackground

ForeColor Propertyxe "AMC property"
Sets the color of the text

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.AMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Color

Description
This property is used to set the color of the control’s text.

Example
This example shows how to use the ForeColor.

mvTextBox1.ForeColor = vbBlack

Enabled Propertyxe "AMC property"
Sets the control as enabled

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Enabled {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	True/False

Description
This property is used to set control as enabled or disabled. If the control is disabled, the user cannot edit the information in the control, or click on the control.

True indicates enabled. False specifies disabled.

Example
This example shows how to use the Enabled property.

mvTextBox1.Enabled = True

Font Propertyxe "AMC property"
Sets the Font information for the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Font {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Font Object

Description
This property is used to set the Font information for the control. Font information refers to the Type Style for the control, including size, bold, italics, etc.

Example
This example shows how to use the Font.

mvTextBox1.Font.Bold = True

ReadOnly Propertyxe "AMC property"
Sets the control as ReadOnly

Applies To
mvTextBox and mvComboBox controls

Syntax
object.ReadOnly {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox or mvComboBox control

	Value
	True/False

Description
This property is used to set control as Read-Only. When the control is read only the user can cut and copy the data, but can not alter it.

Example
This example shows how to use the ReadOnly.

mvTextBox1.ReadOnly = False

SelStart Propertyxe "AMC property"
Returns or sets the starting point of text selected

Applies To
mvTextBox, mvComboBox, mvGrid, and mvLabel controls

Syntax
object.SelStart {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	Number of Characters

Description
This property returns or sets the starting point of text selected.

Use this property for tasks such as setting the insertion point, establishing an insertion range, selecting substrings in a control, or clearing text. Used in conjunction with the Clipboard object, this property is useful for copy, cut, and paste operations.

Example
This example shows how to use the SelStart.

mvTextBox1.SelStart = 0

mvTextBox1.SelLenth = Len(mvTextbox1.InputText)

SelLength Propertyxe "AMC property"
Returns or sets the number of characters selected

Applies To
mvTextBox, mvComboBox, mvGrid, and mvLabel controls

Syntax
object.SelLength {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox mvGrid, or mvLabel control

	Value
	Number of Characters

Description
This property returns or sets the number of characters selected.

Use this property for tasks such as setting the insertion point, establishing an insertion range, selecting substrings in a control, or clearing text. Used in conjunction with the Clipboard object, this property is useful for copy, cut, and paste operations.

Example
This example shows how to use the SelLength.

mvTextBox1.SelStart = 0

mvTextBox1.SelLenth = Len(mvTextbox1.InputText)

Refresh Methodxe "AMC property"
Refresh the data in the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Refresh
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

Description
This method is used to refresh the data in the controls.

Example
This example shows how to use the Refresh method.

mvTextBox1.Refresh
Clear Methodxe "AMC property"
Clear the data in the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Clear
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

Description
This method is used to remove the data in the controls.

Example
This example shows how to use the Clear method.

mvTextBox1.Clear
ProcessSelectList Methodxe "AMC property"
Updates the Select list that can be scrolled through

Applies To
mvTextBox controls

Syntax
object.ProcessSelectList
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox control

Description
This method is used when a select list is supplied. Because the control’s valid item ids are only those found in the select list, this method is used to refresh or re-execute the select list with the most current items.

This method can only be used with Key Fields.

Example
This example shows how to use the ProcessSelectList method.

mvTextBox1.SelectList = “Select Cust with State= “”CA”” “

mvTextBox1.ProcessSelectList
Default Eventxe "AMC property"
Event fired when User first enters fields

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object_Default(Value as String)
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	The Value returned from the dynamic array.

Description
This Event allows a developer to alter or update the value of the control after it has been extracted from the dynamic array, but before the user is allowed to edit it.

Example
This example shows how to use the Default Event.

Private Sub mvTextBox1_Default(Value as String)

Value = Ucase(Value)

End Sub

Validation Eventxe "AMC property"
Event fired when User presses return or moves to the next control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object_Validation(Value as String)
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	The Value to update the dynamic array with.

Description
This Event allows a developer to alter or update the value of the control before it has been replaced in the dynamic array.

Example
This example shows how to use the Validation Event.

Private Sub mvTextBox1_Validation(Value as String)

Value = Ucase(Value)

End Sub

Lookup Eventxe "AMC property"
Event fired when user press the Lookup Button

Applies To
mvTextBox controls

Syntax
object_Lookup(Value as String)
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox control

	Value
	The Value to set after the lookup is done.

Description
This Event allows a developer to display a custom lookup window when the Lookup Button is pressed.

Example
This example shows how to use the Lookup Event.

Private Sub mvTextBox1_Lookup(Value as String)

frmLookup.show vbModal, Me

Value = frmLookup.Value

End Sub

ReadThen Eventxe "AMC property"
Event fired when a Read is Done

Applies To
mvTextBox, mvComboBox, mvGrid, and mvLabel controls

Syntax
object_ReadThen()
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

Description
This Event allows a developer to process information after a read is done and the item is found.

Example
This example shows how to use the ReadThen Event.

Private Sub mvTextBox1_ReadThen()

MvSession1.Extract(“mvTextBox1”,1) = mvSession1.mvDate

End Sub

ReadElse Eventxe "AMC property"
Event fired when a Read is Done

Applies To
mvTextBox, mvComboBox, mvGrid, and mvLabel controls

Syntax
object_ReadElse()
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

Description
This Event allows a developer to process information after a read is done and the item has NOT been found.

Example
This example shows how to use the ReadElse Event.

Private Sub mvTextBox1_ReadElse()

MvSession1.Extract(“mvTextBox1”,1) = mvSession1.mvDate

MvSession1.Extract(“mvTextBox1”,2) = mvSession1.mvTime

End Sub

Chapter 4 [image: image15.png]mvComboBox

The mvComboBox is similar to the Visual Basic ComboBox control (except the mvComboBox is bound to a MultiValue database). Looks and works very much like the mvTextBox, but provides the developer and users a drop down list that can the user can select from. Both the data and the items in the drop down list can be retrieved from the a dynamic array read from a MultiValue database.

The mvComboBox has a label function that allows a developer to assign a label to the control. When the control is moved, the label will go with it. The label can be placed above, below, to the left, or to the right of the actual textbox. The label is optional. If no label is specified, then only the ComboBox will display.

[image: image16.png]
The mvComboBox has basic validation control built into it. A Developer may define the type of input that is valid, e.g. Numeric, Time, or Date. A Developer can also specify a Host BASIC program to be run during both validation, and to generate a “default” value for the control.

[image: image17.png]
The mvComboBox can be defined as a Key Field. A Key Field is used to specify which record is to be read from the MultiValue Database.

Property Pages

[image: image18.bmp]mvComboBox Field Settings Property Pages

Key Field
- The Key Field is used to define an association with a control specified as a Key Field Control. A Key Field Control is a control that is used to capture a record number or id and read it from the Host.

If the developer wants this control to be a Key Field Control, and is not access the record number or id from a previously read record, then leave the Key Field blank and fill out the information found on the “Key Field” tab.

Field Name
- Field name is used if the developer wants to pull information from a dictionary name at run-time instead of manually entering the information at design-time. The control will pull the Conversion, Justification, Caption, and AMC/VMC/SMC from the dictionary item.

AMC
- This is the Attribute number to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

VMC
- This is the multivalue line to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

SMC
- This is the Subvalue line to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

Mandatory
- This check box is used to mark the control as mandatory. When the form is run, then the control will turn the color found in the mvSession property MandatoryColor, and will not allows the data to be saved until this control has a value.

ReadOnly
- This check box causes the control to become read only. The user can still enter the field, but it will not allow them to change the information. It will allow the user to select and copy the information though.

Justification
- The justification allows the developer to set justification of the display for this control: Left and Right are the current selections.

Max Length
- Max Length will keep the user from entered data longer that this value. If Max Length is 0 (zero), then the amount of data allowed is unlimited.

Caption
- This control has the option to have a caption or label displayed with it. If a Field Name was entered, the control will use the caption found in dictionary item.

This is helpful for when the control is moved, then the label will be moved with the control.

Location
- Location is used to define where the caption is place in relation to the control. The caption can be above, below, left or right of the control.

Caption Width
- The Caption Width is the number of characters the developer wants to display in the caption. This is useful when the developer wants to keep all the captions the same side to keep the control from looking jagged.

Data Type
- Data Type is used to define the type of data allowed in the control. This is used for basic validation and keeps the user from entering incorrect data. Some of the data types are: Numeric, Date, Time, Integer, and normal Alphanumeric.

Conversion
- Conversion is used to convert the data from a raw format of the dynamic array to an output format for the user and then back again; for example, a dollar conversion.

Most any conversion that will work with an OCONV and ICONV statement can be used.

mvComboBox List Settings Property Pages

[image: image19.png]Combo Box Style
- There are three styles a Combo Box can take: Drop Down, Simple Combo, and DropDown List. A Drop Down gives the user the ability to edit the data or pick from data in the list.

A Simple Combo is similar to a Drop Down, but doesn’t have a drop down button. The list of items is displayed on the screen under the editable field.

A DropDown List is exactly like the Drop Down, but the data must be selected from list and is not editable.

Auto Drop List
- When a Drop Down or DropDown List style is used, the developer can cause the list to automatically drop. This allows the user to see the list without having to manually press the button to cause the list to drop.

Auto Search
- This is used to specify whether the Combo Box is to use the Auto Search feature. This feature works like IE or Microsoft Money in that it will try to update the rest of the input as the use types it in.

Auto Search Trigger
- This is the number of characters the user must enter before the auto search will start.

List Type
- List type defines the method the list is to be generated. The Different types of methods are: Manual, From record, from Select List, or from an existing Key Field.

“Manual” asks the developer to enter the data to display in the list. It will ask for both the raw value as well as a display value that describes the raw value better.

[image: image20.png]
“From Specific Record” asks the developer for the file name, record name, and the AMC/VMC/SMC position information that list information is to be read from.

[image: image21.bmp]
“From Select List” asks the developer for the select list to use. It also allows the developer to specify a specific location in the items selected to pull a description from. If the developer wishes to do this, then they will need to fill in the File name and the AMC/VMC/SMC information for the location of the description information.

[image: image22.png]
“From Existing Key Field” is used if the data the developer wants in the list is from a Key Field already on the form. The developer will need to specify the Key Field name as well as the AMC/VMC/SMC locations.

mvComboBox Key Field Property Pages

[image: image23.bmp]Key Field
- If the developer wants to make this control a Key Field, then check the box.

File Name
- This is the file name data will be read from.

Session
- This is the session control to use to access the Host. Since the mvControls are designed to be able to access more than one Host system, the controls must know which mvSession control to use.

Lock when Read
- This check box is used to cause the control use a ReadU instead of a standard Read. A ReadU will lock the record upon reading the item.

Lock Control After Read
- If this box is checked, the control will become read-only until the data is written back to the host. This keeps the data in the control from being changed after the read is done.

Must Exist Error Msg
- The developer can create a custom message to display to the user if the record must exist and the user has entered a new record.

Must be new Msg
- The developer can create a custom message to display to the user if the record must be new and the user has entered an existing record.

Read Type
- Read types allow the developer to control the kind of record numbers or ids are entered. There are three read types: Must be new, Must Exist, and Either.

The Read Type “Must be new” will only allow a new record number or id to be entered. The Read Type “Must Exist” will only allow an existing record to be entered. The Read type “Either” will allow the user to enter either an existing or new record number or id.

mvComboBox Default Property Pages

[image: image24.bmp]Default Program
- This property will allow the developer to call a host BASIC program when the user first enters the control.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

 1 – Error. Will set ErrorFlag property to True

 2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

mvComboBox Validation Property Pages

[image: image25.png]Validation Program
- This property will allow the developer to call a host BASIC program when the user first leaves the control.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

 1 – Error. Will set ErrorFlag property to True

 2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

mvComboBox Color Property Pages

[image: image26.bmp]
Back Color
- This property is used to set the background color of the control

Fore Color
- This property is used to set the foreground color of the control

Caption Color
- This property is used to set the color of the caption

mvComboBox Font Property Pages

[image: image27.png]Caption Font
- Sets the font options for the caption

Font
- Sets the font options for the data portion of the control.

Help Text

AMC Propertyxe "AMC property"
Sets the Attribute Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.AMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the attribute position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the Attribute Mark Counter for the dynamic array the value of this control to be pulled from or placed into. It works the VMC and SMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
VMC and SMC
Example
This example shows how to use the AMC.

mvComboBox1.AMC = 1

VMC Propertyxe "AMC property"
Sets the Value Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.VMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the multi-value position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the Value Mark Counter for the dynamic array the value of this control to be pulled from or placed into. It works the AMC and SMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
AMC and SMC
Example
This example shows how to use the VMC.

mvComboBox1.VMC = 1

SMC Propertyxe "AMC property"
Sets the SubValue Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.SMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the subvalue position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the SubValue Mark Counter for the dynamic array the value of this control to be pulled from or placed into. It works the AMC and VMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
AMC and VMC
Example
This example shows how to use the SMC.

mvComboBox1.SMC = 1

KeyId Propertyxe "AMC property"
The name of the Control that is labeled as the Key Field

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.KeyId {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the name of the Key Field control.

Description
This property is used to define the name of the control on the form that is set as the key field control. Normally this property is set during design time, but can be changed at run time.

Example
This example shows how to use the KeyId.

mvComboBox1.KeyId = CustNo

DictItemName Propertyxe "AMC property"
Dictionary Item Name to pull the primary control information from.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.DictItemName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the Dictionary Item Name to pull the primary control information from.

Description
This property is used to return or set the dictionary name to pull primary control information from. The control pulls the AMC, Conversion, Label, and Justification.

This property is read-only at Run Time.

See Also
AMC, Conversion, Label, and Justification
Example
This example shows how to use the DictItemName.

If mvComboBox1.DictItemName = “CustNo” then

MvComboBox1.Justification = “R”

End If

Mandatory Propertyxe "AMC property"
Sets the control as Mandatory.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Mandatory {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Sets True/False if the control is mandatory.

Description
This property is used set the control as required. If the control has been set to mandatory, then the controls background color turns the color specified in the mvSession control’s MandatoryColor property.

True indicates the control is required. False specifies that the control is not required.

Example
This example shows how to use the Mandatory Property.

mvComboBox1.Mandatory = True

MaxLength Propertyxe "AMC property"
Sets the control’s max input length.

Applies To
mvTextBox, mvComboBox, mvListBox, and mvGrid controls

Syntax
object.MaxLength {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, or mvGrid control

	Value
	Sets the maximum input length allowed for this control.

Description
This property sets the maximum length of input the control is allowed. If the max length is zero, then the input length is unlimited.

Example
This example shows how to use the MaxLength Property.

mvComboBox1.MaxLength = 10

DataType Propertyxe "AMC property"
Sets the control’s Data Type

Applies To
mvTextBox, mvComboBox, mvListBox, and mvGrid controls

Syntax
object.DataType {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, or mvGrid control

	Value
	Sets the control’s data type. This helps control basic validation.

Description
This property is used to set the control’s Data Type. The Data Type is used to help control basic validations, such as, numeric only or Date entry.

There are several data types the controls can be set to. There are some samples of what can be done:

Regular
– accept anything

Numeric
– accepts only numbers

Date
– accepts only characters associated with a date. Saves input as an internal Date

Time
– accepts only characters associated with a time. Saves input as an internal Time
Example
This example shows how to use the DataType Property.

mvComboBox1.DataType = mvRegular

Justification Propertyxe "AMC property"
Sets the control’s justification.

Applies To
mvTextBox, mvComboBox, mvListBox, mvGrid, and mvLabel controls

Syntax
object.Justification {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvGrid, or mvLabel control

	Value
	L – Left or R- Right.

Description
Sets the control’s justification: L – left, R - Right.

Example
This example shows how to use the Justification Property.

mvComboBox1.Justification = “L”

Conversion Propertyxe "AMC property"
Sets the control’s Conversion Code.

Applies To
mvTextBox, mvComboBox, mvListBox, mvGrid, and mvLabel controls

Syntax
object.Conversion {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvGrid, or mvLabel control

	Value
	A valid Conversion Code.

Description
This property is used to specify the Conversion Code to use on the data. It is used to translate between internal data in the dynamic array to external data that the user sees. Please keep in mind this conversion code is used with both Oconv and Iconv.

Example
This example shows how to use the Conversion Property.

mvComboBox1.Conversion = “MR2”

ErrorFlag, ErrMsg Properties

Flags the control as an Error.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.ErrorFlag {= True/False}

Object.ErrMsg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets an error message.

Description
This property is used to flag the control as having an error. When the control is flagged as having an error, then the mvButton Control associated with the same Key control field becomes inactive.

ErrMsg is used to store a text version of what the error is.

This control is available at Run-time Only.

Example
This example shows how to use the ErrorFlag and ErrMsg Properties.

mvComboBox1.ErrorFlag = True

mvComboBox1.ErrMsg = “Invalid Customer Number”

CaptionLoc Propertyxe "AMC property"
Sets the location of the label associated with the control

Applies To
mvTextBox, mvComboBox, mvListBox controls

Syntax
object.CaptionLoc {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvListBox, control

	Value
	Sets the Location of the Label associated with the control. Valid values are mvLabelLeft, mvLabelRight, mvLabelTop, mvLabelBottom

Description
This property sets the location of the label that is associated with the control. The Label can be positioned on the Top, Left, Right or Bottom of the control.

Example
This example shows how to use the CaptionLoc Property.

mvComboBox1.CaptionLoc = mvLabelLeft

CaptionWidth Propertyxe "AMC property"
Sets the control’s label width.

Applies To
mvTextBox, mvComboBox, mvListBox, and mvGrid controls

Syntax
object.CaptionWidth {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, or mvGrid control

	Value
	Sets the label Width.

Description
This control is used to set the width of the label. If the value is –1 then the controls automatically sizes the label width to the size of the label text.

Example
This example shows how to use the CaptionWidth Property.

mvComboBox1.CaptionWidth = 10

CaptionFont Propertyxe "AMC property"
Sets the font information for the label

Applies To
mvTextBox, mvComboBox, and mvListBox controls

Syntax
object.CaptionFont {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvListBox control

	Value
	Sets the label font characteristics.

Description
This control is used to set the font characteristics of the label. This includes the font size, font type, bold, underline, and italics.

Example
This example shows how to use the CaptionFont Property.

mvComboBox1.CaptionFont.Bold = True

CaptionColor Propertyxe "AMC property"
Sets the color the label is to be displayed in

Applies To
mvTextBox, mvComboBox, mvListBox controls

Syntax
object.CaptionColor {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvListBox control

	Value
	Sets the label Width.

Description
This control is used to set the color of the label text

Example
This example shows how to use the CaptionColor Property.

mvComboBox1.CaptionColor = vbBlue

Caption Propertyxe "AMC property"
Sets the value for control’s associated label.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, and mvGrid controls

Syntax
object.Caption {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, or mvGrid control

	Value
	Sets the value to be displayed in the control’s associated label.

Description
This property sets the control’s associated label. If this is set to null, then no label displays.

Example
This example shows how to use the Caption Property.

mvComboBox1.Caption = “Cust #”

DefaultProg Propertyxe "AMC property"
Specify a MultiValue BASIC program to be called at Default.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.DefaultProg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Name of the program.

Description
This property sets the name of the MultiValue BASIC program to call at Default.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

1 – Error. Will set ErrorFlag property to True

2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

Example
This example shows how to use the DefaultProg Property.

mvComboBox1.DefaultProg = “CUST.SUB1”

ValidationProg Propertyxe "AMC property"
Specify a MultiValue BASIC program to be called at Validation.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, and mvGrid controls

Syntax
object.ValidationProg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, or mvGrid control

	Value
	Name of the program.

Description
This property sets the name of the MultiValue BASIC program to call at Validation.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

1 – Error. Will set ErrorFlag property to True

2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

Example
This example shows how to use the ValidationProg Property.

mvComboBox1.ValidationProg = “CUST.SUB1”

KeyField Propertyxe "AMC property"
Specifies if the control is a Key Field control.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.KeyField {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvLabel, or mvGrid control

	Value
	True/False

Description
This is used to specify if this control is a Key Field Control. A Key Field control is a control that reads a record from a file. There are associated properties that are needed to make this control a Key Field. Some are: Session, FileName, and ReadType.

Example
This example shows how to use the KeyField Property.

mvComboBox1.KeyField = True

mvComboBox1.FileName = “EMP”

mvComboBox1.Session = “mvSession1”

mvComboBox1.ReadType = mvMustExist

FileName Propertyxe "AMC property"
Sets the file name for a Key Field Control.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.FileName {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	Sets the file name that a record is read from.

Description
This property sets the file name that a record is read from.

Example
This example shows how to use the FileName Property.

mvComboBox1.KeyField = True

mvComboBox1.FileName = “EMP”

mvComboBox1.Session = “mvSession1”

mvComboBox1.ReadType = mvMustExist

ReadType Propertyxe "AMC property"
Sets the type of read that is allowed.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.ReadType {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	mvEither, mvMustBeNew, mvMustExist

Description
This property is used to set the type of read allowed. The values are: mvEither, mvMustBeNew, and mvMustExist.

mvEither allows both a new and existing record to be input into the control.

mvMustBeNew only allows a record that does not currently exist in the file to be input into the control.

mvMustExist only allows a record that already exists on file to be input into the control.

Example
This example shows how to use the ReadType Property.

mvComboBox1.KeyField = True

mvComboBox1.FileName = “EMP”

mvComboBox1.Session = “mvSession1”

mvComboBox1.ReadType = mvMustExist

Session Propertyxe "AMC property"
Sets the name of the Session Control.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.Session {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	Sets the name of a mvSession control.

Description
This property sets the name of the session control that is to be used to connect to the database. This property is read-only once the connection has been made to the database. This property is typically only set or changed at design time.

Example
This example shows how to use the Session Property.

mvComboBox1.KeyField = True

mvComboBox1.FileName = “EMP”

mvComboBox1.Session = “mvSession1”

mvComboBox1.ReadType = mvMustExist

MustExistErrMsg Propertyxe "AMC property"
Set the error message to be displayed when a record is read and does not exist.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.MustExistErrMsg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	Sets the error message you want to display to the user.

Description
This property sets the error message the user sees when they enter a record that does not exist. This error message only displays if the ReadType is mvMustExist.

Example
This example shows how to use the MustExistErrMsg Property.

mvComboBox1.MustExistErrMsg = “This employee does not exist!”

MustBeNewErrMsg Propertyxe "AMC property"
Sets the error message to be displayed if the record must be new.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.MustBeNewErrMsg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	Sets the error message displayed for the user.

Description
This property sets the error message the user receives if the record must be new and the user input an existing record. This error message only displays if ReadType is mvMustBeNew.

Example
This example shows how to use the MustBeNewErrMsg Property.

mvComboBox1.MustBeNewErrMsg = “You must input a new Employee record number”

ReadU Propertyxe "AMC property"
Specifies if a ReadU is to be done.

Applies To
mvTextBox, mvComboBox, mvLabel, and mvGrid controls

Syntax
object.ReadU {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	True/False

Description
This property specifies whether the control is to do a ReadU instead of a Read when the record is being read from the file. A ReadU locks the record until a new record is read or until this record is written to the file.

True indicates a ReadU. False specifies a Read.

Example
This example shows how to use the ReadU Property.

mvComboBox1.ReadU = True

LockAfterRead Propertyxe "AMC property"
Causes the Control to become unalterable after the read.

Applies To
mvTextBox, mvComboBox, and mvGrid controls

Syntax
object.LockAfterRead {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvGrid control

	Value
	True/False

Description
This property specifies whether the control is to become unalterable after the read is done. If LockAfterRead is True, then once the record has been read, the control becomes read-only until the item has been written and/or cleared.

Example
This example shows how to use the LockAfterRead Property.

mvComboBox1.LockAfterRead = True

Overwrite Propertyxe "AMC property"
Causes the data in the control to become selected

Applies To
mvTextBox and mvComboBox controls

Syntax
object.Overwrite {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox or mvComboBox control

	Value
	True/False

Description
This property causes the data in the control to be selected. When a user enters a character while the data is selected, or highlighted in blue, it overwrites the current value in the control.

Example
This example shows how to use the Overwrite:

mvComboBox1.Overwrite = True

Text Propertyxe "AMC property"
Sets and Returns the value of the dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvGrid, and mvLabel controls

Syntax
object.Text {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the value of the control.

Description
This property is used to set or return the value of the control. When a program evaluates the value of Text, it will be evaluating a value from the dynamic array as specified by AMC, VMC, and SMC.

If a value is set to Text, then that value goes directly into the dynamic array and updates the associated information, including other controls. If the control is a Key Field control, then the value input in Text is read from the file.

 Keep in mind that this returns or sets the value in the dynamic array only. If a developer wants to change the value while the user is editing the current control’s data, the InputText property needs to be used. See InputText for more information.

See Also
InputText
Example
This example shows how to use the Text.

mvComboBox1.Text = “Joe”

InputText Propertyxe "AMC property"
Sets and Returns the value of the Control

Applies To
mvTextBox, mvComboBox, and mvGrid controls

Syntax
object.InputText {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvGrid control

	Value
	Returns or Sets the value of the control.

Description
This property is used to change the value of the control. It does not update the dynamic array, nor pull information from the dynamic array. It only updates and returns the value the user has input in the control.

This is handy when a developer wants to change the value input in the Change Event or the KeyPress Event.

See Also
Text
Example
This example shows how to use the InputText.

mvComboBox1.InputText = mvComboBox1.InputText & “ White”

BackColor Propertyxe "AMC property"
Changes the Background color.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.BackColor {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Color.

Description
This property is used to set the background color of the control

Example
This example shows how to use the BackColor.

mvComboBox1.BackColor = vbWindowsBackground

ForeColor Propertyxe "AMC property"
Sets the color of the text

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.AMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Color

Description
This property is used to set the color of the control’s text.

Example
This example shows how to use the ForeColor.

mvComboBox1.ForeColor = vbBlack

Enabled Propertyxe "AMC property"
Sets the control as enabled

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Enabled {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	True/False

Description
This property is used to set control as enabled or disabled. If the control is disabled, the user cannot edit the information in the control, nor click on the control.

True indicates enabled. False specifies disabled.

Example
This example shows how to use the Enabled property.

mvComboBox1.Enabled = True

Font Propertyxe "AMC property"
Sets the Font information for the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Font {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Font Object

Description
This property is used to set the Font information for the control. Font information refers to the Type Style for the control, including size, bold, italics, etc.

Example
This example shows how to use the Font.

mvComboBox1.Font.Bold = True

ReadOnly Propertyxe "AMC property"
Sets the control as Read-Only

Applies To
mvTextBox and mvComboBox controls

Syntax
object.ReadOnly {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox or mvComboBox control

	Value
	True/False

Description
This property is used to set control as Read-Only. When the control is read-only the user can cut and copy the data, but can not alter it.

Example
This example shows how to use the ReadOnly.

mvComboBox1.ReadOnly = False

SelStart Propertyxe "AMC property"
Returns or sets the starting point of text selected

Applies To
mvTextBox, mvComboBox, mvGrid, and mvLabel controls

Syntax
object.SelStart {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	Number of Characters

Description
This property returns or sets the starting point of text selected.

Use this property for tasks such as setting the insertion point, establishing an insertion range, selecting substrings in a control, or clearing text. Used in conjunction with the Clipboard object, this property is useful for copy, cut, and paste operations.

Example
This example shows how to use the SelStart.

mvComboBox1.SelStart = 0

mvComboBox1.SelLenth = Len(mvComboBox1.InputText)

SelLength Propertyxe "AMC property"
Returns or sets the number of characters selected

Applies To
mvTextBox, mvComboBox, mvGrid, and mvLabel controls

Syntax
object.SelLength {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox mvGrid, or mvLabel control

	Value
	Number of Characters

Description
This property returns or sets the number of characters selected.

Use this property for tasks such as setting the insertion point, establishing an insertion range, selecting substrings in a control, or clearing text. Used in conjunction with the Clipboard object, this property is useful for copy, cut, and paste operations.

Example
This example shows how to use the SelLength.

mvComboBox1.SelStart = 0

mvComboBox1.SelLenth = Len(mvComboBox1.InputText)

Style Propertyxe "AMC property"
Sets the Combo Box Style

Applies To
mvComboBox controls

Syntax
object.Style {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox control

	Value
	VbComboDropdown/ vbComboDropdownList/ vbComboSimple

Description
This property is used to set the type of combo box to use as input.

The Style property settings for the ComboBox control are:

Constant

Value
Description

vbComboDropDown
0
(Default) Dropdown Combo. Includes a drop-down list and a text box. The user can select from the list or type in the text box.

vbComboSimple
1
Simple Combo. Includes a text box and a list which doesn't drop down. The user can select from the list or type in the text box. The size of a Simple combo box includes both the edit and list portions. By default, a Simple combo box is sized so that none of the list is displayed. Increase the Height property to display more of the list.

vbComboDrop-DownList
2
Dropdown List. This style allows selection only from the drop-down list.

Example
This example shows how to use the Style.

mvComboBox1.Style = vbComboSimple

ListKeyId Propertyxe "AMC property"
Sets the Key Field control to use to fill list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListKeyId {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Key Field name

Description
This property is used to specify the name of the Key Field control that the list is to be populated from. This information is only used when ListFillType is lftKeyField.

Example
This example shows how to use the ListKeyField.

Select Case mvComboBox1.ListFillType

Case lftKeyField

mvComboBox1.ListKeyField = “mvComboBox1”

Case lftRecord

mvComboBox1.ListFileName = “temp.file”

mvComboBox1.ListRecordName = “emp.0.193”

Case lftSelectList

mvComboBox1.SelectList = “select emp”

Case lftManual

mvComboBox1.AddItem “Joe”,”123”

mvComboBox1.AddItem “Bob”,”456”

End Case

ListFileName Propertyxe "AMC property"
Sets the File Name to use to fill list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListFileName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	File Name

Description
This property is used to specify the file name that the list is to be populated from. This information is used when ListFillType is lftRecord and lftSelectList.

Example
This example shows how to use the ListFileName.

Select Case mvComboBox1.ListFillType

Case lftKeyField

mvComboBox1.ListKeyField = “mvComboBox1”

Case lftRecord

mvComboBox1.ListFileName = “temp.file”

mvComboBox1.ListRecordName = “emp.0.193”

Case lftSelectList

mvComboBox1.SelectList = “select emp”

Case lftManual

mvComboBox1.AddItem “Joe”,”123”

mvComboBox1.AddItem “Bob”,”456”

End Case
ListRecordName Propertyxe "AMC property"
Sets the record name used to fill list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListRecordName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Record name

Description
This property is used to specify the Record Name that the list is to be populated from. This information is only used when ListFillType is lftRecord.

Example
This example shows how to use the ListRecordName.

Select Case mvComboBox1.ListFillType

Case lftKeyField

mvComboBox1.ListKeyField = “mvComboBox1”

Case lftRecord

mvComboBox1.ListFileName = “temp.file”

mvComboBox1.ListRecordName = “emp.0.193”

Case lftSelectList

mvComboBox1.SelectList = “select emp”

Case lftManual

mvComboBox1.AddItem “Joe”,”123”

mvComboBox1.AddItem “Bob”,”456”

End Case
ListDictItemName Propertyxe "AMC property"
Sets the Dictionary Item Name that holds the AMC information used to fill list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListDictItemName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Dictionary Name

Description
This property is used to specify the name of the Dictionary Item that the list is to be populated from. This information is only used when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListDictItemName.

Select Case mvComboBox1.ListFillType

Case lftKeyField

mvComboBox1.ListKeyField = “mvComboBox1”

mvComboBox1.ListAMC = 1

mvComboBox1.ListVMC = 2

mvComboBox1.ListSMC = 0

Case lftRecord

mvComboBox1.ListFileName = “temp.file”

mvComboBox1.ListRecordName = “emp.0.193”

mvComboBox1.ListDictItemName = “AcctName”

Case lftSelectList

mvComboBox1.SelectList = “select emp”

Case lftManual

mvComboBox1.AddItem “Joe”,”123”

mvComboBox1.AddItem “Bob”,”456”

End Case
ListAMC Propertyxe "AMC property"
Sets the AMC that the information to fill list is from

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListAMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the value of the AMC that the list is to be populated from. This information is only used when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListAMC.

Select Case mvComboBox1.ListFillType

Case lftKeyField

mvComboBox1.ListKeyField = “mvComboBox1”

mvComboBox1.ListAMC = 1

mvComboBox1.ListVMC = 2

mvComboBox1.ListSMC = 0

Case lftRecord

mvComboBox1.ListFileName = “temp.file”

mvComboBox1.ListRecordName = “emp.0.193”

mvComboBox1.ListDictItemName = “AcctName”

Case lftSelectList

mvComboBox1.SelectList = “select emp”

Case lftManual

mvComboBox1.AddItem “Joe”,”123”

mvComboBox1.AddItem “Bob”,”456”

End Case
ListVMC Propertyxe "AMC property"
Sets the VMC that the information is to fill list from

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListVMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the value of the VMC that the list is to be populated from. This information is only used when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListVMC.

Select Case mvComboBox1.ListFillType

Case lftKeyField

mvComboBox1.ListKeyField = “mvComboBox1”

mvComboBox1.ListAMC = 1

mvComboBox1.ListVMC = 2

mvComboBox1.ListSMC = 0

Case lftRecord

mvComboBox1.ListFileName = “temp.file”

mvComboBox1.ListRecordName = “emp.0.193”

mvComboBox1.ListDictItemName = “AcctName”

Case lftSelectList

mvComboBox1.SelectList = “select emp”

Case lftManual

mvComboBox1.AddItem “Joe”,”123”

mvComboBox1.AddItem “Bob”,”456”

End Case
ListSMC Propertyxe "AMC property"
Sets the SMC that the information is to fill list from

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListSMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the value of the SMC that the list is to be populated from. This information is only used when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListSMC.

Select Case mvComboBox1.ListFillType

Case lftKeyField

mvComboBox1.ListKeyField = “mvComboBox1”

mvComboBox1.ListAMC = 1

mvComboBox1.ListVMC = 2

mvComboBox1.ListSMC = 0

Case lftRecord

mvComboBox1.ListFileName = “temp.file”

mvComboBox1.ListRecordName = “emp.0.193”

mvComboBox1.ListDictItemName = “AcctName”

Case lftSelectList

mvComboBox1.SelectList = “select emp”

Case lftManual

mvComboBox1.AddItem “Joe”,”123”

mvComboBox1.AddItem “Bob”,”456”

End Case
ListConversion Propertyxe "AMC property"
Sets the Conversion code to use when creating the display

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListConversion {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the value of the Conversion to use to create the display for the list. When using a Record, Select list, or Key Field, there are times when the developer wants the user to see a display different from the raw data that these Fill types use. ListConversion is any valid Conversion code that works with the OCONV statement.

 This information is only when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListConversion.

mvComboBox1.ListConversion = “TEMP;X;;1”

List Propertyxe "AMC property"
Sets or returns the display of the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.List(index) {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	List Display

Description
This property is used to set or return the display the users see.

Example
This example shows how to use the List.

mvComboBox1.List(1) = “Joe”

mvComboBox1.ItemData(1) = “1”

ItemData Propertyxe "AMC property"
Sets or returns the Value for each Display item of the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ItemData(index) {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Value of each Display Item

Description
This property is used to set or return the value of each display item. This is the value that is placed into the dynamic array.

Example
This example shows how to use the ItemData.

mvComboBox1.List(1) = “Joe”

mvComboBox1.ItemData(1) = “1”

ListCount Propertyxe "AMC property"
The number of items in the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListCount {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Number of items in the list

Description
This property is used to return the number of items in the list.

Example
This example shows how to use the ListCount.

Dim Num as integer

Num = mvComboBox1.ListCount

For I = 1 to Num

Print mvComboBox1.List(I)

Next I

ListIndex Propertyxe "AMC property"
The Index value for the item selected

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListIndex {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Location in the list

Description
This property is used to return the index location of the item selected in the list.

Example
This example shows how to use the ListIndex.

Print mvComboBox1.List(mvComboBox1.ListIndex)

NewIndex Propertyxe "AMC property"
The location of the last item added to list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.NewIndex {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Index location of the last item added to list

Description
This property returns the index location of the last item added to the list.

Example
This example shows how to use the NewIndex.

Print mvComboBox1.List(mvComboBox1.NewIndex)

SelectList Propertyxe "AMC property"
Sets the Select List to use to fill List from.

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.SelectList {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	SelectList

Description
This property is used to specify the Select list that the list is to be populated from. This information is only when ListFillType is lftSelectList.

Example
This example shows how to use the SelectList.

Select Case mvComboBox1.ListFillType

Case lftKeyField

mvComboBox1.ListKeyField = “mvComboBox1”

mvComboBox1.ListAMC = 1

mvComboBox1.ListVMC = 2

mvComboBox1.ListSMC = 0

Case lftRecord

mvComboBox1.ListFileName = “temp.file”

mvComboBox1.ListRecordName = “emp.0.193”

mvComboBox1.ListDictItemName = “AcctName”

Case lftSelectList

mvComboBox1.SelectList = “select emp”

Case lftManual

mvComboBox1.AddItem “Joe”,”123”

mvComboBox1.AddItem “Bob”,”456”

End Case
ListFillType Propertyxe "AMC property"
Sets the process that the list is going to use to fill itself

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListFillType {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the process the control uses to fill its list:

LftManual
- Uses what is manually input during Design Type

LftRecord
- Uses a specific record to populate the list

LftSelectList
- Uses a select list to populate the list

LftKeyField
- Uses a Key Field control to populate the list

Example
This example shows how to use the ListFillType.

Select Case mvComboBox1.ListFillType

Case lftKeyField

mvComboBox1.ListKeyField = “mvComboBox1”

mvComboBox1.ListAMC = 1

mvComboBox1.ListVMC = 2

mvComboBox1.ListSMC = 0

Case lftRecord

mvComboBox1.ListFileName = “temp.file”

mvComboBox1.ListRecordName = “emp.0.193”

mvComboBox1.ListDictItemName = “AcctName”

Case lftSelectList

mvComboBox1.SelectList = “select emp”

Case lftManual

mvComboBox1.AddItem “Joe”,”123”

mvComboBox1.AddItem “Bob”,”456”

End Case
AutoSearch Propertyxe "AMC property"
Specifies if the Combo Box is to use the Auto Search feature

Applies To
mvComboBox and mvGrid controls

Syntax
object.AutoSearch {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox or mvGrid control

	Value
	True/False

Description
This property is used to specify whether the Combo Box is to use the Auto Search feature. This feature works like IE or Microsoft Money in that it tries to update the rest of the input as the user types it in.

This property works with the AutoSearchTrigger to decide when to start looking for matches for the user.

Example
This example shows how to use the AutoSearch.

MvComboBox1.AutoSearch = True

MvComboBox1.AutoSearchTrigger = 5

AutoSearchTrigger Propertyxe "AMC property"
Specifies when the AutoSearch will start.

Applies To
mvComboBox and mvGrid controls

Syntax
object.AutoSearchTrigger {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox or mvGrid control

	Value
	Number of Characters

Description
This property is used to specify when the AutoSearch should start. It represents the number of characters the user is allowed to type in before the control starts to find matches.

Example
This example shows how to use the AutoSearchTrigger.

MvComboBox1.AutoSearch = True

MvComboBox1.AutoSearchTrigger = 5

AutoDropList Propertyxe "AMC property"
Specifies if the list is to automatically drop when control is entered

Applies To
mvComboBox controls

Syntax
object.AutoDropList {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox control

	Value
	True/False

Description
This property is used to specify whether the list is to automatically drop when the control become enabled. If this is not enabled, then the user has to manual click on the down arrow to display the list.

Example
This example shows how to use the AutoDropList.

MvComboBox1.AutoDropList = True

Refresh Methodxe "AMC property"
Refresh the data in the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Refresh
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

Description
This method is used to refresh the data in the controls.

Example
This example shows how to use the Refresh method.

mvComboBox1.Refresh
Clear Methodxe "AMC property"
Clear the data in the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Clear
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

Description
This method is used to remove the data in the controls.

Example
This example shows how to use the Clear method.

mvComboBox1.Clear
LoadListBox Methodxe "AMC property"
Loads the data into the List box

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.LoadListBox
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvGrid control

Description
This method is used to load the data into the list box if ListFillType is lftRecord, lftSelectList, or lftKeyField.

Example
This example shows how to use the LoadListBox method.

mvComboBox1.ClearListBox

mvComboBox1.ListFillType = lftSelectList

mvComboBox1.LoadListBox
ClearListBox Methodxe "AMC property"
Clears the List box

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ClearListBox
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox, or mvGrid control

Description
This method is used to clear the List box.

Example
This example shows how to use the ClearListBox method.

mvComboBox1.ClearListBox
mvComboBox1.ListFillType = lftSelectList

mvComboBox1.LoadListBox

AddItem Methodxe "AMC property"
Adds a new item to the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.AddItem(Display,Itemid)
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox, or mvGrid control

	Display
	This is the value that is to be displayed to the customer.

	ItemId
	This is the value that is placed into the dynamic array.

Description
This method is used to add a new item to the list. The Display is what the user sees. The ItemId is placed into the dynamic array. Contrary to how the ItemId is used on standard Visual Basic ComboBox or ListBox, ItemId is a string value not an integer.

Example
This example shows how to use the AddItem method.

mvComboBox1.ClearListBox
mvComboBox1.AddItem “Joe”,”Joe”

RemoveItem Methodxe "AMC property"
Removes an existing item from the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.RemoveItem(idx)
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox, or mvGrid control

	Idx
	The index location to remove.

Description
This method is used to remove an item from the list. This removes both the display and the ItemId.

Example
This example shows how to use the RemoveItem method.

mvComboBox1.RemoveItem 1
Default Eventxe "AMC property"
Event fired when User first enters fields

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object_Default(Value as String)
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	The Value returned from the dynamic array.

Description
This Event allows a developer to alter or update the value of the control after it has been extracted from the dynamic array, but before the user is allowed to edit it.

Example
This example shows how to use the Default Event.

Private Sub mvComboBox1_Default(Value as String)

Value = Ucase(Value)

End Sub

Validation Eventxe "AMC property"
Event fired when User presses return or moves to the next control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object_Validation(Value as String)
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	The Value to update the dynamic array with.

Description
This Event allows a developer to alter or update the value of the control before it is replaced in the dynamic array.

Example
This example shows how to use the Validation Event.

Private Sub mvComboBox1_Validation(Value as String)

Value = Ucase(Value)

End Sub

AutoSearchReset Eventxe "AMC property"
Event fired when the number of characters input is equal or larger than the AutoSearchTrigger

Applies To
mvTextBox controls

Syntax
object_Lookup(Value as String)
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox control

	Value
	The information that has currently been input.

Description
This Event is processed when the number of characters input is equal or larger than the AutoSearchTrigger value. This allows a developer to change the list the AutoSearch uses based on what the user has input.

Example
This example shows how to use the AutoSearchReset Event.

Private Sub mvComboBox1_AutoSearchReset(Value as String)

If Len(Value) = 3 then

mvComboBox1.ClearListBox

mvComboBox1.ListRecordName = “List.” & Value

mvComboBox1.LoadListBox

End If

End Sub

ReadThen Eventxe "AMC property"
Event fired when a Read is Done

Applies To
mvTextBox, mvComboBox, mvGrid, and mvLabel controls

Syntax
object_ReadThen()
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

Description
This Event allows a developer process information after a read is done and the item has been found.

Example
This example shows how to use the ReadThen Event.

Private Sub mvComboBox1_ReadThen()

MvSession1.Extract(“mvComboBox1”,1) = mvSession1.mvDate

End Sub

ReadElse Eventxe "AMC property"
Event fired when a Read is Done

Applies To
mvTextBox, mvComboBox, mvGrid, and mvLabel controls

Syntax
object_ReadElse()
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

Description
This Event allows a developer to process information after a read is done and the item has NOT been found.

Example
This example shows how to use the ReadElse Event.

Private Sub mvComboBox1_ReadElse()

MvSession1.Extract(“mvComboBox1”,1) = mvSession1.mvDate

MvSession1.Extract(“mvComboBox1”,2) = mvSession1.mvTime

End Sub

Chapter 5 [image: image28.png]mvGrid

The mvGrid allows a developer to create a multivalue input method that is similar to the way it is done in MultiValue BASIC. The developer specifies the fields to display in the grid control. If there are more fields than the size of the screen or the size of the control, the control will scroll automatically as needed.

The mvGrid supports two different types of input styles: TextBox and ComboBox. These input styles have the same functionality as the “standard” mvTextBox and mvComboBox, except for a few selected properties, such as multi-line. The mvGrid also has a read-only mode that works like the mvLabel.

The mvGrid gives the developer the ability to specify either row numbers or row labels, as well as limit the number of multi-value lines the user may input. If the developer specifies row labels, then the number of multi-value lines will be restricted to the number of row labels the developer has defined.

[image: image29.png]
Property Pages

[image: image30.png]mvGrid Field Settings Property Pages

Key Field
- The Key Field is used to define an association with a control specified as a Key Field Control. A Key Field Control is a control that is used to capture a record number or id and read it from the Host.

If the developer wants this control to be a Key Field Control, and is not access the record number or id from a previously read record, then leave the Key Field blank and fill out the information found on the “Key Field” tab.

Field Name
- Field name is used if the developer wants to pull information from a dictionary name at run-time instead of manually entering the information at design-time. The control will pull the Conversion, Justification, Caption, and AMC/VMC/SMC from the dictionary item.

AMC
- This is the Attribute number to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

VMC
- This is the multivalue line to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

SMC
- This is the subvalue line to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

Mandatory
- This check box is used to mark the control as mandatory. When the form is run, then the control will turn the color found in the mvSession property MandatoryColor, and will not let the item be saved until this control has a value.

Justification
- The justification allows the developer to set justification of the display for this control: Left and Right are the current selections.

Max Length
- Max Length will keep the user from entereing data longer that this value. If Max Length is 0 (zero), then the amount of data allowed is unlimited.

Caption
- This control has the option to enter column captions. If a Field Name was entered, the control will use the caption found in dictionary item.

Width
- The Caption Width is the number of characters the developer wants to display in the caption. This will define the width of the column.

Data Type
- Data Type is used to define the type of data allowed in the control. This is used for basic validation and keeps the user from entering incorrect data. Some of the data types are: Numeric, Date, Time, Integer, and normal Alphanumeric.

Conversion
- Conversion is used to convert the data from a raw format of the dynamic array to an output format for the user and then back again; for example, a dollar conversion.

Most any conversion that will work with an OCONV and ICONV statement can be used.

vGrid List Settings Property Pages

[image: image31.png]Combo Box Style
- There are two styles a Combo Box can take: Drop Down and DropDown List. A Drop Down gives the user the ability to edit the data or pick from data in the list.

A DropDown List is exactly like the Drop Down, but the data must be selected from list and is not editable.

Auto Drop List
- When a Drop Down or DropDown List style is used, the developer can cause the list to automatically drop. This allows the user to see the list without having to manually press the button to cause the list to drop.

Auto Search
- This is used to specify whether the Combo Box is to use the Auto Search feature. This feature works like IE or Microsoft Money in that it will try to update the rest of the input as the use types it in.

Auto Search Trigger
- This is the number of characters the user must enter before the auto search will start.

List Type
- List type defines the method the list is to be generated. The Different types of methods are: Manual, From record, from Select List, or from an existing Key Field.

“Manual” asks the developer to enter the data to display in the list. It will ask for both the raw value as well as a display value that describes the raw value better.

[image: image32.png]
“From Specific Record” asks the developer for the file name, record name, and the AMC/VMC/SMC position information that list information is to be read from.

[image: image33.png]
“From Select List” asks the developer for the select list to use. It also allows the developer to specify a specific location in the items selected to pull a description from. If the developer wishes to do this, then they will need to fill in the File name and the AMC/VMC/SMC information for the location of the description information.

[image: image34.png]
“From Existing Key Field” is used if the data the developer wants in the list is from a Key Field already on the form. The developer will need to specify the Key Field name as well as the AMC/VMC/SMC locations.

mvGrid Field Field Property Pages

[image: image35.png]
Key Field
- If the developer wants to make this control a Key Field, then check the box.

File Name
- This is the file name data will be read from.

Session
- This is the session control to use to access the Host. Since the mvControls are designed to be able to access more than one Host system, the controls must know which mvSession control to use.

Lock when Read
- This check box is used to cause the control use a ReadU instead of a standard Read. A ReadU will lock the record upon reading the item.

Must Exist Error Msg
- The developer can create a custom message to display to the user if the record must exist and the user has entered a new record.

Must be new Msg
- The developer can create a custom message to display to the user if the record must be new and the user has entered an existing record.

Read Type
- Read types allow the developer to control the kind of record numbers or ids are entered. There are three read types: Must be new, Must Exist, and Either.

The Read Type “Must be new” will only allow a new record number or id to be entered. The Read Type “Must Exist” will only allow an existing record to be entered. The Read type “Either” will allow the user to enter either an existing or new record number or id.

mvGrid Default Property Pages

[image: image36.png]
Default Program
- This property will allow the developer to call a host BASIC program when the user first enters the control.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

 1 – Error. Will set ErrorFlag property to True

 2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

mvGrid Validation Property Pages

[image: image37.png]Validation Program
- This property will allow the developer to call a host BASIC program when the user first leaves the control.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

 1 – Error. Will set ErrorFlag property to True

 2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

[image: image38.png]
mvGrid Advanced Property Pages

Add TextBox
- This button will add a new column that is a Text Box.

Add ComboBox
- This button will add a new column that is a Combo Box.

Add DropDown
- This button will add a new column that is a DropDown List.

Add Label
- This button will add a new column that is a Label.

Remove
- This button will remove an existing column.

Max# of values
- specifies the maximum number for multivalue or subvalue lines allowed in the grid. If it is set to 0 (zero), then unlimited number lines are allowed.

Input Direction
- This is the direction that the developer wants the input to be processed in. If Row/Column is selected, then the field information become rows and the multivalue or subvalue lines will become columns. If Column/Row is used, then the field information will become the columns and the multivalue and subvalue lines will become rows.

Use Labels
- The grid allows the developer to use labels for the each multivalue or subvalue line instead of numbers. For example, using Address1 and Address2 as line labels instead of display “1)” and “2)”. Using labels will automatically set the “Max#of values” to however many labels the developer enters.

mvGrid Color Property Pages

[image: image39.png]Back Color
- This property is used to set the background color of the control

Fore Color
- This property is used to set the foreground color of the control

mvGrid Font Property Pages

[image: image40.png]
Font
- Sets the font options for the data portion of the control.

Help Text

Cnt Propertyxe "AMC property"
Sets and Returns the MultiValue or SubValue count position

Applies To
mvGrid controls

Syntax
object.Cnt {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	Returns or Sets the MultiValue or SubValue count position.

Description
This property is used to change the MultiValue or SubValue count position. Since the grid can be displayed in two different ways, Row/column or Column/Row, then the value of Row and Col may be different from the values of Cnt and DictPos.

Cnt always represents the Multivalue or Subvalue position in the dynamic array. Row always represent the current row that the user is at in the grid. If RowColumn is True, then Cnt actually represents the grid’s column, rather than the grid’s row when RowColumn is False (this is the default setting).

Example
This example shows how to use the Cnt.

mvGrid1.Cnt = 2

mvGrid1.DictPos = 1

mvGrid1.RowColumn = True

print mvGrid1.Col &” # “& mvGrid1.DictPos

print mvGrid1.Row &” # “& mvGrid1.Cnt
Row Propertyxe "AMC property"
Sets and Returns the grid’s Row Location

Applies To
mvGrid controls

Syntax
object.Row {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	Returns or Sets the grid’s row location.

Description
This property is used to change the grid’s row location. Since the grid can be displayed in two different ways, Row/column or Column/Row, then the value of Row and Col may be different from the values of Cnt and DictPos.

Row always represents the current row that the user is at in the grid.

Example
This example shows how to use the Row.

mvGrid1.Cnt = 2

mvGrid1.DictPos = 1

mvGrid1.RowColumn = True

print mvGrid1.Col &” # “& mvGrid1.DictPos

print mvGrid1.Row &” # “& mvGrid1.Cnt

Col Propertyxe "AMC property"
Sets and Returns the grid’s Column position

Applies To
mvGrid controls

Syntax
object.Col {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	Returns or Sets grid’s column position.

Description
This property is used to change the grid’s column position. Since the grid can be displayed in two different ways, Row/column or Column/Row, then the value of Row and Col may be different from the values of Cnt and DictPos.

Col always represents the grid’s column position.

Example
This example shows how to use the Col.

mvGrid1.Cnt = 2

mvGrid1.DictPos = 1

mvGrid1.RowColumn = True

print mvGrid1.Col &” # “& mvGrid1.DictPos

print mvGrid1.Row &” # “& mvGrid1.Cnt

DictPos Propertyxe "AMC property"
Sets and Returns the current DictItem Class position

Applies To
mvGrid controls

Syntax
object.DictPos {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	Returns or Sets the current DictItem class position.

Description
This property is used to change the current DictItem class position. Since the grid can be displayed in two different ways, Row/column or Column/Row, then the value of Row and Col may be different from the values of Cnt and DictPos.

DictPos always represents the current DictItem class position. Col always represents the current column that the user is at in the grid. If RowColumn is True, then DictPos actually represents the grid’s row location, rather than the grid’s column location as when RowColumn is False (this is the default setting).

Example
This example shows how to use the DictPos.

mvGrid1.Cnt = 2

mvGrid1.DictPos = 1

mvGrid1.RowColumn = True

print mvGrid1.Col &” # “& mvGrid1.DictPos
print mvGrid1.Row &” # “& mvGrid1.Cnt

LastCnt Propertyxe "AMC property"
Returns the position number of the last Cnt

Applies To
mvGrid controls

Syntax
object.LastCnt {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	Returns a position number of the last Cnt.

Description
Returns the position number of the last Cnt. This property can also be used to find out how many Multivalue or Subvalue positions currently are in the grid..

Example
This example shows how to use the LastCnt.

mvGrid1.Cnt = mvGrid1.LastCnt

NumRows Propertyxe "AMC property"
Returns the number of rows in the grid

Applies To
mvGrid controls

Syntax
object.NumRows {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	Returns the number of rows in the grid.

Description
This property is used to return the number of rows in the grid.

Example
This example shows how to use the NumRows.

If mvGrid1.NumRows >= 5 and mvGrid1.NumCols >= 5 Then

MsgBox “Martrix too Big”

mvGrid1.ErrorFlag = True

End if

NumCols Propertyxe "AMC property"
Returns the number of columns in the grid

Applies To
mvGrid controls

Syntax
object.NumCols {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	Returns the number of columns in the grid.

Description
This property is used to return the number of columns in the grid.

Example
This example shows how to use the NumCols.

If mvGrid1.NumRows >= 5 and mvGrid1.NumCols >= 5 Then

MsgBox “Martrix too Big”

mvGrid1.ErrorFlag = True

End if

DictNum Propertyxe "AMC property"
Returns the number of fields in the Grid.

Applies To
mvGrid controls

Syntax
object.DictNum {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	Returns the number of fields in the grid.

Description
Returns the number of Fields in the Grid. This returns the number of items that can be access through the property DictItem.

Example
This example shows how to use the DictNum.

Dim I as Integer

For I = 1 to mvGrid1.DictNum

mvGrid1.DictItem(I).Tag = “Test”

Next I

DictItem Propertyxe "AMC property"
Returns a DictItem object.

Applies To
mvGrid controls

Syntax
object.DictItem {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	Returns a DictItem object.

Description
Returns a DictItem object. This object holds all the properties that define how the input and display are going to work for this field.

Example
This example shows how to use the DictItem.

Dim I as Integer

For I = 1 to mvGrid1.DictNum

mvGrid1.DictItem(I).Tag = “Test”

Next I

RowColumn Propertyxe "AMC property"
Sets or Returns how the user is to see and input the data.

Applies To
mvGrid controls

Syntax
object.RowColumn {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	True/False

Description
Sets or returns how the user is to see and input the data. False is the default.

True indicates that the Rows are field positions and the Columns are multi-value and subvalue positions. (opposite of a normal spread sheet)

False indicates that the Rows are multi-value and subvalue positions and that Columns are field positions. This is typical of most spreadsheet the users are used to work with.

Example
This example shows how to use the RowColumn.

mvGrid1.Cnt = 2

mvGrid1.DictPos = 1

mvGrid1.RowColumn = True

print mvGrid1.Col &” # “& mvGrid1.DictPos

print mvGrid1.Row &” # “& mvGrid1.Cnt

MaxRow Propertyxe "AMC property"
Sets or Returns the maximum number of Cnt allowed

Applies To
mvGrid controls

Syntax
object.MaxRow {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	Maximum number of Cnt allowed

Description
Sets or returns the maximum number of Cnt allowed. If MaxRow is 0, then unlimited number of Cnt can be input.

Example
This example shows how to use the MaxRow.

mvGrid1.MaxRow = 10

UseRowLabel Propertyxe "AMC property"
Sets or Returns whether to use Row Numbers or Labels

Applies To
mvGrid controls

Syntax
object.UseRowLabel {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	True/False

Description
Sets or returns whether to use row numbers or labels. By default, the multivalue position or subvalue positions are defined by a number. There may be time when the developer wants these positions to be represented by a label instead. UseRowLabel uses the values in RowLabel() to define the multivalue and subvalue positions.

Example
This example shows how to use the UseRowLabel.

mvGrid1.UseRowLabel = True

mvGrid1.AddRowLabel “Address 1”

mvGrid1.AddRowLabel “Address 2”

RowLabel Propertyxe "AMC property"
Returns the row label for this position

Applies To
mvGrid controls

Syntax
object.RowLabel(idx) {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	The row label

Description
Returns the row label for this position.

Example
This example shows how to use the RowLabel.

mvGrid1.UseRowLabel = True

mvGrid1.AddRowLabel “Address 1”

mvGrid1.AddRowLabel “Address 2”

Debug.Print mvGrid1.RowLabel(1)

InputText Propertyxe "AMC property"
Sets and Returns the value of the Control

Applies To
mvTextBox, mvComboBox, and mvGrid controls

Syntax
object.InputText {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvGrid control

	Value
	Returns or Sets the value of the control.

Description
This property is used to change the value of the control. It does not update the dynamic array, nor pull information from the dynamic array. It only updates and returns the value the user has input in the control.

This is handy when a developer wants to change the value input in the Change Event or the KeyPress Event.

See Also
Text
Example
This example shows how to use the InputText.

mvGrid1.InputText = mvGrid1.InputText & “ White”

BackColor Propertyxe "AMC property"
Changes the Background color.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.BackColor {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Color.

Description
This property is used to set the background color of the control

Example
This example shows how to use the BackColor.

mvGrid1.BackColor = vbWindowsBackground

ForeColor Propertyxe "AMC property"
Sets the color of the text

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.AMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Color

Description
This property is used to set the color of the control’s text.

Example
This example shows how to use the ForeColor.

mvGrid1.ForeColor = vbBlack

Font Propertyxe "AMC property"
Sets the Font information for the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Font {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Font Object

Description
This property is used to set the Font information for the control. Font information refers to the Type Style for the control, including size, bold, italics, etc.

Example
This example shows how to use the Font.

mvGrid1.Font.Bold = True

SelStart Propertyxe "AMC property"
Returns or sets the starting point of text selected

Applies To
mvTextBox, mvComboBox, mvGrid, and mvLabel controls

Syntax
object.SelStart {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

	Value
	Number of Characters

Description
This property returns or sets the starting point of text selected.

Use this property for tasks such as setting the insertion point, establishing an insertion range, selecting substrings in a control, or clearing text. Used in conjunction with the Clipboard object, this property is useful for copy, cut, and paste operations.

Example
This example shows how to use the SelStart.

mvGrid1.SelStart = 0

mvGrid1.SelLenth = Len(mvGrid1.InputText)

SelLength Propertyxe "AMC property"
Returns or sets the number of characters selected

Applies To
mvTextBox, mvComboBox, mvGrid, and mvLabel controls

Syntax
object.SelLength {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox mvGrid, or mvLabel control

	Value
	Number of Characters

Description
This property returns or sets the number of characters selected.

Use this property for tasks such as setting the insertion point, establishing an insertion range, selecting substrings in a control, or clearing text. Used in conjunction with the Clipboard object, this property is useful for copy, cut, and paste operations.

Example
This example shows how to use the SelLength.

mvGrid1.SelStart = 0

mvGrid1.SelLenth = Len(mvGrid1.InputText)

AddRowLabel Method

Adds a new row label

Applies To
mvGrid controls

Syntax
object.AddRowLabel(Label {,idx})
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Label
	New Label

Description
Adds a new Label to the Row Label list.

Example
This example shows how to use the AddRowLabel.

mvGrid1.UseRowLabel = True

mvGrid1.AddRowLabel “Address 1”

mvGrid1.AddRowLabel “Address 2”

RemoveRowLabel Method

Removes a row label

Applies To
mvGrid controls

Syntax
object.RemoveRowLabel(idx)
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	idx
	Removes the row label in this position

Description
Removes a Row Label from the list.

Example
This example shows how to use the RemoveRowLabel.

mvGrid1.UseRowLabel = True

mvGrid1.RemoveRowLabel 1

mvGrid1.RemoveRowLabel 2

mvGrid1.AddRowLabel “Address 1”

mvGrid1.AddRowLabel “Address 2”

ClearRowLabel Method

Removes all the row labels

Applies To
mvGrid controls

Syntax
object.ClearRowLabel(idx)
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

Description
Removes all the Row Label from the list.

Example
This example shows how to use the ClearRowLabel.

mvGrid1.ClearRowLabel
AddColumn Method

Adds a new DictItem position

Applies To
mvGrid controls

Syntax
object.AddColumn({Label {,Width {,Before {,After}}}})
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Label
	A Label to use

	Width
	The width of the column

	Before
	The position to insert before

	After
	The position to insert after

Description
Adds a new DictItem position. The arguments are optional. If Before and After are left blank, then a new DictItem position is added to the end of the current list of DictItem positions. If Width is null, then the column is created using the default width.

Example
This example shows how to use the AddColumn.

mvGrid1.AddColumn
mvGrid1.DictItem(mvGrid1.NumDict).AMC = 1

RemoveColumn Method

Removes an existing DictItem position

Applies To
mvGrid controls

Syntax
object.RemoveColumn(idx)
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	idx
	The position to remove

Description
Removes a column.

Example
This example shows how to use the RemoveColumn.

mvGrid1.RemoveColumn mvGrid1.NumDict

InsertRow Method

Inserts a new multivalue or subvalue position

Applies To
mvGrid controls

Syntax
object.InsertRow({RowToInsertAt})
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	RowToInsertAt
	The multivalue or subvalue position to insert at.

Description
Adds a new multivalue or subvalue position. If RowToInsertAt is null, then the new multivalue or subvalue is added to the end.

Example
This example shows how to use the InsertRow.

mvGrid1.InsertRow
DeleteRow Method

Deletes a multivalue or subvalue position

Applies To
mvGrid controls

Syntax
object.DeleteRow(Cnt)
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Cnt
	Cnt to Delete

Description
Deletes a multivalue or subvalue from all the fields in the grid.

Example
This example shows how to use the DeleteRow.

mvGrid1.DeleteRow 1

Default Eventxe "AMC property"
Event fired when User first enters fields

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object_Default(Value as String, Col as integer, Row as integer)
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	The Value returned from the dynamic array.

Description
This Event allows a developer to alter or update the value of the control after it has been extracted from the dynamic array, but before the user is allowed to edit it.

Example
This example shows how to use the Default Event.

Private Sub mvGrid1_Default(Value as String, Col as Integer, _

Row as Integer)

Value = Ucase(Value)

End Sub

Validation Eventxe "AMC property"
Event fired when User presses return or moves to the next control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object_Validation(Value as String, Col as Integer, Row as Integer)
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	The Value to update the dynamic array with.

Description
This Event allows a developer to alter or update the value of the control before it is replaced in the dynamic array.

Example
This example shows how to use the Validation Event.

Private Sub mvGrid1_Validation(Value as String, Col as Integer, _

Row as Integer)

Value = Ucase(Value)

End Sub

AutoSearchReset Eventxe "AMC property"
Event fired when the number of characters input is equal or larger than the AutoSearchTrigger

Applies To
mvComboBox and mvGrid controls

Syntax
object_AuotSearchReset(Value as String, Col as Integer, Row as Integer)
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox or mvGrid control

	Value
	The information that has currently been input.

Description
This Event processes when the number of characters input is equal or larger than the AutoSearchTrigger value. This allows a developer to change the list the AutoSearch uses based on what the user has input.

Example
This example shows how to use the AutoSearchReset Event.

Private Sub mvGrid1_AutoSearchReset(Value as String, Col as Integer, _

Row as Integer)

If Len(Value) = 3 then

mvGrid1.DictItem(Col).ClearListBox

mvGrid1.DictItem(Col).ListRecordName = “List.” & Value

mvGrid1.DictItem(Col)LoadListBox

End If

End Sub

ReadThen Eventxe "AMC property"
Event fired when a Read is Done

Applies To
mvTextBox, mvComboBox, mvGrid, and mvLabel controls

Syntax
object_ReadThen(Col as integer, Row as Integer)
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

Description
This Event allows a developer to process information after a read is done and the item has been found.

Example
This example shows how to use the ReadThen Event.

Private Sub mvGrid1_ReadThen(Col as Integer, Row as Integer)

MvSession1.Extract(“mvComboBox1”,1) = mvSession1.mvDate

End Sub

ReadElse Eventxe "AMC property"
Event fired when a Read is Done

Applies To
mvTextBox, mvComboBox, mvGrid, and mvLabel controls

Syntax
object_ReadElse()
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvGrid, or mvLabel control

Description
This Event allows a developer process information after a read is done and the item has NOT been found.

Example
This example shows how to use the ReadElse Event.

Private Sub mvGrid1_ReadElse(Col as Integer, Row as Integer)

MvSession1.Extract(“mvComboBox1”,1) = mvSession1.mvDate

MvSession1.Extract(“mvComboBox1”,2) = mvSession1.mvTime

End Sub

DeleteRow Eventxe "AMC property"
Event fired when a Cnt is deleted

Applies To
mvGrid controls

Syntax
object_DeleteRow(Cnt as Integer)
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Cnt
	The Cnt to delete.

Description
This Event allows a developer to add additional checking or processing during the delete. This event is fired before any of the multivalue or subvalue positions are deleted.

Example
This example shows how to use the DeleteRow Event.

Private Sub mvGrid1_DeleteRow(Cnt as Integer)

‘ If Cnt is less than 5, then do not delete

If Cnt <= 5 then ErrorFlag = True

End Sub

InsertRow Eventxe "AMC property"
Event fired when a Cnt is Inserted

Applies To
mvGrid controls

Syntax
object_InsertRow(Cnt as Integer)
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Cnt
	The Cnt to delete.

Description
This Event allows a developer to add additional checking or processing during the Insert. This event is fired before any of the multivalue or subvalue positions are Inserted.

Example
This example shows how to use the InsertRow Event.

Private Sub mvGrid1_InsertRow(Cnt as Integer)

‘ If Cnt is less than 5, then do not Insert

If Cnt <= 5 then ErrorFlag = True

End Sub

DictItem() Class
AMC Propertyxe "AMC property"
Sets the Attribute Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.AMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the attribute position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the Attribute Mark Counter for the dynamic array the value of this control to be pulled from or placed into. It works the VMC and SMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
VMC and SMC
Example
This example shows how to use the AMC.

mvGrid1.DictItem(1).AMC = 1

VMC Propertyxe "AMC property"
Sets the Value Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.VMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the multi-value position that specifies the location in the dynamic array that the data is to be retrieved from or placed into.

Description
This property is used to set the Value Mark Counter for the dynamic array the value of this control to be pulled from or placed into. It works the AMC and SMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
AMC and SMC
Example
This example shows how to use the VMC.

mvGrid1.DictItem(1).VMC = 1

SMC Propertyxe "AMC property"
Sets the SubValue Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.SMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or sets the subvalue position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the SubValue Mark Counter for the dynamic array the value of this control to be pulled from or placed into. It works the AMC and VMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
AMC and VMC
Example
This example shows how to use the SMC.

mvGrid1.DictItem(1).SMC = 1

KeyId Propertyxe "AMC property"
The name of the Control that is labeled as the Key Field

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.KeyId {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the name of the Key Field control.

Description
This property is used to define the name of the control on the form that is set as the key field control. Normally this property is set during design time, but can be changed at run time.

Example
This example shows how to use the KeyId.

mvGrid1.DictItem(1).KeyId = CustNo

DictItemName Propertyxe "AMC property"
Dictionary Item Name to pull the primary control information from.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.DictItemName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the Dictionary Item Name to pull the primary control information from.

Description
This property is used to return or set the dictionary name to pull primary control information from. The control pulls the AMC, Conversion, Label, and Justification.

This property is read-only at Run Time.

See Also
AMC, Conversion, Label, and Justification
Example
This example shows how to use the DictItemName.

If mvGrid1.DictItem(1).DictItemName = “CustNo” then

MvGrid1.DictItem(1).Justification = “R”

End If

Mandatory Propertyxe "AMC property"
Sets the control as Mandatory.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Mandatory {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Sets True/False if the control is mandatory.

Description
This property is used set the control as required. If the control has been set to mandatory, then the controls background color turns the color specified in the mvSession control’s MandatoryColor property.

Example
This example shows how to use the Mandatory Property.

mvGrid1.DictItem(1).Mandatory = True

MaxLength Propertyxe "AMC property"
Sets the controls maximum input length.

Applies To
mvTextBox, mvComboBox, mvListBox, and mvGrid controls

Syntax
object.MaxLength {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, or mvGrid control

	Value
	Sets the maximum length allowed for this control.

Description
This property sets the maximum length of input the control is allowed. If the max length is zero, then the input length is unlimited.

Example
This example shows how to use the MaxLength Property.

mvGrid1.DictItem(1).MaxLength = 10

DataType Propertyxe "AMC property"
Sets the control’s Data Type

Applies To
mvTextBox, mvComboBox, mvListBox, and mvGrid controls

Syntax
object.DataType {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, or mvGrid control

	Value
	Sets the control’s data type. This helps control basic validation.

Description
This property is used to set the control’s Data Type. The Data Type is used to help control basic validations, such as, numeric only or Date entry.

There are several data types the controls can be set to. There are some samples of what can be done:

Regular
– Accepts anything

Numeric
– Accepts only numbers

Date
– Accepts only characters associated with a date. Saves input as an internal Date

Time
– Accepts only characters associated with a time. Saves input as an internal Time
Example
This example shows how to use the DataType Property.

mvGrid1.DictItem(1).DataType = mvRegular

Justification Propertyxe "AMC property"
Sets the control’s justification.

Applies To
mvTextBox, mvComboBox, mvListBox, mvGrid, and mvLabel controls

Syntax
object.Justification {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvGrid, or mvLabel control

	Value
	L – Left or R- Right.

Description
Sets the control’s justification: L – left, R - Right.

Example
This example shows how to use the Justification Property.

mvGrid1.DictItem(1).Justification = “L”

Conversion Propertyxe "AMC property"
Sets the control’s Conversion Code.

Applies To
mvTextBox, mvComboBox, mvListBox, mvGrid, and mvLabel controls

Syntax
object.Conversion {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvGrid, or mvLabel control

	Value
	A valid Conversion Code.

Description
This property is used to specify the Conversion Code to use on the data. It is used to translate between internal data in the dynamic array to external data that the user sees. Please keep in mind this conversion code is used with both Oconv and Iconv.

Example
This example shows how to use the Conversion Property.

mvGrid1.DictItem(1).Conversion = “MR2”

Correlative Propertyxe "AMC property"
Sets a correlative to be used to create the value

Applies To
mvLabel and mvGrid controls

Syntax
object.Correlative {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvLabel or mvGrid control

	Value
	A valid Correlative.

Description
This property is used to specify a Correlative that is used to create a value for the Label. This is any valid conversion or F-Correlative.

Example
This example shows how to use the Correlative Property.

mvGrid1.DictItem(1).Correlative = “F;0;(G1*1)”

ErrorFlag, ErrMsg Properties

Flags the control as an Error.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.ErrorFlag {= True/False}

Object.ErrMsg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets an error message.

Description
This property is used to flag the control as having an error. When the control is flagged as having an error, then the mvButton Control associated with the same Key control field becomes inactive.

ErrMsg is used to store a text version of what the error is.

This control is available at Run-time Only.

Example
This example shows how to use the ErrorFlag and ErrMsg Properties.

mvGrid1.DictItem(1).ErrorFlag = True

mvGrid1.DictItem(1).ErrMsg = “Invalid Customer Number”

ControlType Propertyxe "AMC property"
Sets type of control to use in this column

Applies To
mvGrid controls

Syntax
object.ControlType {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvGrid control

	Value
	mvGridText, mvGridCombo, mvGridDropdown, mvGridLabel.

Description
This property is used to specify the type of control to use in this column. This property is what makes the mvGrid have the ability to accept data from the user.

mvGridText

- Creates a standard text box

mvGridCombo

- Creates a Combo Box

mvGridDropDown
- Creates a drop down list to be selected from

mvGrid Label

- Display the data as read only. Same as a Label

Example
This example shows how to use the ControlType Property.

mvGrid1.DictItem(1).ControlType = mvGridText

CaptionWidth Propertyxe "AMC property"
Sets the control’s label width

Applies To
mvTextBox, mvComboBox, mvListBox, and mvGrid controls

Syntax
object.CaptionWidth {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, or mvGrid control

	Value
	Sets the label Width.

Description
This control is used to set the width of the label. If the value is –1 then the controls automatically sizes the label width to the size of the label text.

Example
This example shows how to use the CaptionWidth Property.

mvGrid1.DictItem(1).CaptionWidth = 10

Caption Propertyxe "AMC property"
Sets the value for control’s associated label.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, and mvGrid controls

Syntax
object.Caption {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, or mvGrid control

	Value
	Sets the value to be displayed in the control’s associated label.

Description
This property sets the control’s associated label. If this is set to null, then no label displays.

Example
This example shows how to use the Caption Property.

mvGrid1.DictItem(1).Caption = “Cust #”

DefaultProg Propertyxe "AMC property"
Specify a MultiValue BASIC program to be called at Default.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.DefaultProg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Name of the program.

Description
This property sets the name of the MultiValue BASIC program to call at Default.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

1 – Error. Will set ErrorFlag property to True

2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

Example
This example shows how to use the DefaultProg Property.

mvGrid1.DictItem(1).DefaultProg = “CUST.SUB1”

ValidationProg Propertyxe "AMC property"
Specify a MultiValue BASIC program to be called at Validation.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, and mvGrid controls

Syntax
object.ValidationProg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, or mvGrid control

	Value
	Name of the program.

Description
This property sets the name of the MultiValue BASIC program to call at Validation.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

1 – Error. Will set ErrorFlag property to True

2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

Example
This example shows how to use the ValidationProg Property.

mvGrid1.DictItem(1).ValidationProg = “CUST.SUB1”

Overwrite Propertyxe "AMC property"
Causes the data in the control to become selected

Applies To
mvTextBox, mvComboBox, and mvGrid controls

Syntax
object.Overwrite {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvGrid control

	Value
	True/False

Description
This property causes the data in the control to be selected. When users enter a character while the data is selected, or highlighted in blue, it overwrites the current value in the control.

Example
This example shows how to use the Overwrite:

mvGrid1.DictItem(1).Overwrite = True

Text Propertyxe "AMC property"
Sets and Returns the value of the dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvGrid, and mvLabel controls

Syntax
object.Text {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the value of the control.

Description
This property is used to set or return the value of the control. When a program evaluates the value of Text, it is evaluating a value from the dynamic array as specified by AMC, VMC, and SMC.

If a value is set to Text, then that value goes directly into the dynamic array and updates the associated information, including other controls. If the control is a Key Field control, then the value input in Text is read from the file.

 Keep in mind that this returns or sets the value in the dynamic array only. If a developer wants to change the value while the user is editing the current control’s data, the InputText property needs to be used. See InputText for more information.

See Also
InputText
Example
This example shows how to use the Text.

mvGrid1.DictItem(1).Text = “Joe”

Enabled Propertyxe "AMC property"
Sets the control as enabled

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Enabled {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	True/False

Description
This property is used to set control as enabled or disabled. If the control is disabled, the user cannot edit the information in the control, nor click on the control.

True indicates enabled. False specifies disabled.

Example
This example shows how to use the Enabled property.

mvGrid1.DictItem(1).Enabled = True

ReadOnly Propertyxe "AMC property"
Sets the control as Read-Only

Applies To
mvTextBox and mvComboBox controls

Syntax
object.ReadOnly {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox or mvComboBox control

	Value
	True/False

Description
This property is used to set control as Read-Only. When the control is read only the user can cut and copy the data, but can not alter it.

Example
This example shows how to use the ReadOnly.

mvGrid1.DictItem(1).ReadOnly = False

ListKeyId Propertyxe "AMC property"
Sets the Key Field control to use to fill list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListKeyId {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Key Field name

Description
This property is used to specify the name of the Key Field control that the list is to be populated from. This information is only used when ListFillType is lftKeyField.

Example
This example shows how to use the ListKeyField.

Select Case mvGrid1.DictItem(1).ListFillType

Case lftKeyField

mvGrid1.DictItem(1).ListKeyField = “mvComboBox1”

Case lftRecord

mvGrid1.DictItem(1).ListFileName = “temp.file”

mvGrid1.DictItem(1).ListRecordName = “emp.0.193”

Case lftSelectList

mvGrid1.DictItem(1).SelectList = “select emp”

Case lftManual

mvGrid1.DictItem(1).AddItem “Joe”,”123”

mvGrid1.DictItem(1).AddItem “Bob”,”456”

End Case

ListFileName Propertyxe "AMC property"
Sets the File Name to use to fill list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListFileName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	File Name

Description
This property is used to specify the file name that the list is to be populated from. This information is used when ListFillType is lftRecord and lftSelectList.

Example
This example shows how to use the ListFileName.

Select Case mvGrid1.DictItem(1).ListFillType

Case lftKeyField

mvGrid1.DictItem(1).ListKeyField = “mvComboBox1”

Case lftRecord

mvGrid1.DictItem(1).ListFileName = “temp.file”

mvGrid1.DictItem(1).ListRecordName = “emp.0.193”

Case lftSelectList

mvGrid1.DictItem(1).SelectList = “select emp”

Case lftManual

mvGrid1.DictItem(1).AddItem “Joe”,”123”

mvGrid1.DictItem(1).AddItem “Bob”,”456”

End Case
ListRecordName Propertyxe "AMC property"
Sets the record name used to fill list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListRecordName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Record name

Description
This property is used to specify the Record Name that the list is to be populated from. This information is only used when ListFillType is lftRecord.

Example
This example shows how to use the ListRecordName.

Select Case mvGrid1.DictItem(1).ListFillType

Case lftKeyField

mvGrid1.DictItem(1).ListKeyField = “mvComboBox1”

Case lftRecord

mvGrid1.DictItem(1).ListFileName = “temp.file”

mvGrid1.DictItem(1).ListRecordName = “emp.0.193”

Case lftSelectList

mvGrid1.DictItem(1).SelectList = “select emp”

Case lftManual

mvGrid1.DictItem(1).AddItem “Joe”,”123”

mvGrid1.DictItem(1).AddItem “Bob”,”456”

End Case
ListDictItemName Propertyxe "AMC property"
Sets the Dictionary Item Name that holds the AMC information used to fill list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListDictItemName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Dictionary Name

Description
This property is used to specify the name of the Dictionary Item that the list is to be populated from. This information is only when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListDictItemName.

Select Case mvGrid1.DictItem(1).ListFillType

Case lftKeyField

mvGrid1.DictItem(1).ListKeyField = “mvComboBox1”

mvGrid1.DictItem(1).ListAMC = 1

mvGrid1.DictItem(1).ListVMC = 2

mvGrid1.DictItem(1).ListSMC = 0

Case lftRecord

mvGrid1.DictItem(1).ListFileName = “temp.file”

mvGrid1.DictItem(1).ListRecordName = “emp.0.193”

mvGrid1.DictItem(1).ListDictItemName = “AcctName”

Case lftSelectList

mvGrid1.DictItem(1).SelectList = “select emp”

Case lftManual

mvGrid1.DictItem(1).AddItem “Joe”,”123”

mvGrid1.DictItem(1).AddItem “Bob”,”456”

End Case
ListAMC Propertyxe "AMC property"
Sets the AMC that the information to fill list is from

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListAMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the value of the AMC that the list is to be populated from. This information is only when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListAMC.

Select Case mvGrid1.DictItem(1).ListFillType

Case lftKeyField

mvGrid1.DictItem(1).ListKeyField = “mvComboBox1”

mvGrid1.DictItem(1).ListAMC = 1

mvGrid1.DictItem(1).ListVMC = 2

mvGrid1.DictItem(1).ListSMC = 0

Case lftRecord

mvGrid1.DictItem(1).ListFileName = “temp.file”

mvGrid1.DictItem(1).ListRecordName = “emp.0.193”

mvGrid1.DictItem(1).ListDictItemName = “AcctName”

Case lftSelectList

mvGrid1.DictItem(1).SelectList = “select emp”

Case lftManual

mvGrid1.DictItem(1).AddItem “Joe”,”123”

mvGrid1.DictItem(1).AddItem “Bob”,”456”

End Case
ListVMC Propertyxe "AMC property"
Sets the VMC that the information is to fill list from

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListVMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the value of the VMC that the list is to be populated from. This information is only used when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListVMC.

Select Case mvGrid1.DictItem(1).ListFillType

Case lftKeyField

mvGrid1.DictItem(1).ListKeyField = “mvComboBox1”

mvGrid1.DictItem(1).ListAMC = 1

mvGrid1.DictItem(1).ListVMC = 2

mvGrid1.DictItem(1).ListSMC = 0

Case lftRecord

mvGrid1.DictItem(1).ListFileName = “temp.file”

mvGrid1.DictItem(1).ListRecordName = “emp.0.193”

mvGrid1.DictItem(1).ListDictItemName = “AcctName”

Case lftSelectList

mvGrid1.DictItem(1).SelectList = “select emp”

Case lftManual

mvGrid1.DictItem(1).AddItem “Joe”,”123”

mvGrid1.DictItem(1).AddItem “Bob”,”456”

End Case
ListSMC Propertyxe "AMC property"
Sets the SMC that the information to fill list is from

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListSMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the value of the SMC that the list is to be populated from. This information is only used when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListSMC.

Select Case mvGrid1.DictItem(1).ListFillType

Case lftKeyField

mvGrid1.DictItem(1).ListKeyField = “mvComboBox1”

mvGrid1.DictItem(1).ListAMC = 1

mvGrid1.DictItem(1).ListVMC = 2

mvGrid1.DictItem(1).ListSMC = 0

Case lftRecord

mvGrid1.DictItem(1).ListFileName = “temp.file”

mvGrid1.DictItem(1).ListRecordName = “emp.0.193”

mvGrid1.DictItem(1).ListDictItemName = “AcctName”

Case lftSelectList

mvGrid1.DictItem(1).SelectList = “select emp”

Case lftManual

mvGrid1.DictItem(1).AddItem “Joe”,”123”

mvGrid1.DictItem(1).AddItem “Bob”,”456”

End Case
ListConversion Propertyxe "AMC property"
Sets the Conversion code to use when creating the display

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListConversion {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the value of the Conversion to use to create the display for the list. When using a Record, Select list, or Key Field, there are times when the developer wants the user to see a display different from the raw data that these Fill types use. ListConversion is any valid Conversion code that works with the OCONV statement.

 This information is only when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListConversion.

mvGrid1.DictItem(1).ListConversion = “TEMP;X;;1”

List Propertyxe "AMC property"
Sets or returns the display of the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.List(index) {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	List Display

Description
This property is used to set or return the display the users see.

Example
This example shows how to use the List.

mvGrid1.DictItem(1).List(1) = “Joe”

mvGrid1.DictItem(1).ItemData(1) = “1”

ItemData Propertyxe "AMC property"
Sets or returns the Value for each Display item of the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ItemData(index) {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Value of each Display Item

Description
This property is used to set or return the value of each display item. This is the value that is placed into the dynamic array.

Example
This example shows how to use the ItemData.

mvGrid1.DictItem(1).List(1) = “Joe”

mvGrid1.DictItem(1).ItemData(1) = “1”

ListCount Propertyxe "AMC property"
The number of items in the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListCount {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Number of items in the list

Description
This property is used to return the number of items in the list.

Example
This example shows how to use the ListCount.

Dim Num as integer

Num = mvGrid1.DictItem(1).ListCount

For I = 1 to Num

Print mvGrid1.DictItem(1).List(I)

Next I

ListIndex Propertyxe "AMC property"
The Index value for the item selected

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListIndex {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Location in the list

Description
This property is used to return the index location of the item selected in the list.

Example
This example shows how to use the ListIndex.

Print mvGrid1.DictItem(1).List(mvGrid1.DictItem(1).ListIndex)

NewIndex Propertyxe "AMC property"
The location of the last item added to list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.NewIndex {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Index location of the last item added to list

Description
This property returns the index location of the last item added to the list.

Example
This example shows how to use the NewIndex.

Print mvGrid1.DictItem(1).List(mvGrid1.DictItem(1).NewIndex)

SelectList Propertyxe "AMC property"
Sets the Select List to use to fill List from.

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.SelectList {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	SelectList

Description
This property is used to specify the Select list that the list is to be populated from. This information is only when ListFillType is lftSelectList.

Example
This example shows how to use the SelectList.

Select Case mvGrid1.DictItem(1).ListFillType

Case lftKeyField

mvGrid1.DictItem(1).ListKeyField = “mvComboBox1”

mvGrid1.DictItem(1).ListAMC = 1

mvGrid1.DictItem(1).ListVMC = 2

mvGrid1.DictItem(1).ListSMC = 0

Case lftRecord

mvGrid1.DictItem(1).ListFileName = “temp.file”

mvGrid1.DictItem(1).ListRecordName = “emp.0.193”

mvGrid1.DictItem(1).ListDictItemName = “AcctName”

Case lftSelectList

mvGrid1.DictItem(1).SelectList = “select emp”

Case lftManual

mvGrid1.DictItem(1).AddItem “Joe”,”123”

mvGrid1.DictItem(1).AddItem “Bob”,”456”

End Case
ListFillType Propertyxe "AMC property"
Sets the process that the list is going to use to fill itself

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListFillType {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the process the control uses to fill its list:

LftManual
- Uses what is manually input during Design Type

LftRecord
- Uses a specific record to populate the list

LftSelectList
- Uses a select list to populate the list

LftKeyField
- Uses a Key Field control to populate the list

Example
This example shows how to use the ListFillType.

Select Case mvGrid1.DictItem(1).ListFillType

Case lftKeyField

mvGrid1.DictItem(1).ListKeyField = “mvComboBox1”

mvGrid1.DictItem(1).ListAMC = 1

mvGrid1.DictItem(1).ListVMC = 2

mvGrid1.DictItem(1).ListSMC = 0

Case lftRecord

mvGrid1.DictItem(1).ListFileName = “temp.file”

mvGrid1.DictItem(1).ListRecordName = “emp.0.193”

mvGrid1.DictItem(1).ListDictItemName = “AcctName”

Case lftSelectList

mvGrid1.DictItem(1).SelectList = “select emp”

Case lftManual

mvGrid1.DictItem(1).AddItem “Joe”,”123”

mvGrid1.DictItem(1).AddItem “Bob”,”456”

End Case
AutoSearch Propertyxe "AMC property"
Specifies if the Combo Box is to use the Auto Search feature

Applies To
mvComboBox and mvGrid controls

Syntax
object.AutoSearch {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox or mvGrid control

	Value
	True/False

Description
This property is used to specify whether the Combo Box is to use the Auto Search feature. This feature works like IE or Microsoft Money in that it tries to update the rest of the input as the user types it in.

This property works the AutoSearchTrigger to decide when to start looking for matches for the user.

Example
This example shows how to use the AutoSearch.

MvGrid1.DictItem(1).AutoSearch = True

MvGrid1.DictItem(1).AutoSearchTrigger = 5

AutoSearchTrigger Propertyxe "AMC property"
Specifies when the AutoSearch will start.

Applies To
mvComboBox and mvGrid controls

Syntax
object.AutoSearchTrigger {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox or mvGrid control

	Value
	Number of Characters

Description
This property is used to specify when the AutoSearch should start. It represents the number of characters the user is allowed to type in before the control starts to find matches.

Example
This example shows how to use the AutoSearchTrigger.

MvGrid1.DictItem(1).AutoSearch = True

MvGrid1.DictItem(1).AutoSearchTrigger = 5

AutoDropList Propertyxe "AMC property"
Specifies if the list is to automatically drop when control is entered

Applies To
mvComboBox and mvGrid controls

Syntax
object.AutoDropList {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox or mvGrid control

	Value
	True/False

Description
This property is used to specify whether the list is to automatically drop when the control become enabled. If this is not enabled, then the user has to manual click on the down arrow to display the list.

Example
This example shows how to use the AutoDropList.

mvGrid1.DictItem(1).AutoDropList = True

Refresh Methodxe "AMC property"
Refresh the data in the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Refresh
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

Description
This method is used to refresh the data in the controls.

Example
This example shows how to use the Refresh method.

mvGrid1.DictItem(1).Refresh
Clear Methodxe "AMC property"
Clear the data in the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Clear
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

Description
This method is used to remove the data in the controls.

Example
This example shows how to use the Clear method.

mvGrid1.DictItem(1).Clear
LoadListBox Methodxe "AMC property"
Loads the data into the List box

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.LoadListBox
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvGrid control

Description
This method is used to load the data into the list box if ListFillType is lftRecord, lftSelectList, or lftKeyField.

Example
This example shows how to use the LoadListBox method.

mvGrid1.DictItem(1).ClearListBox

mvGrid1.DictItem(1).ListFillType = lftSelectList

mvGrid1.DictItem(1).LoadListBox
ClearListBox Methodxe "AMC property"
Clears the List box

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ClearListBox
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox, or mvGrid control

Description
This method is used to clear the List box.

Example
This example shows how to use the ClearListBox method.

mvGrid1.DictItem(1).ClearListBox
mvGrid1.DictItem(1).ListFillType = lftSelectList

mvGrid1.DictItem(1).LoadListBox

AddItem Methodxe "AMC property"
Adds a new item to the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.AddItem(Display,Itemid)
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox, or mvGrid control

	Display
	This is the value that is to be displayed to the customer.

	ItemId
	This is the value that is placed into the dynamic array.

Description
This method is used to add a new item to the list. The Display is what the user sees. The ItemId is placed into the dynamic array. Contrary to how the ItemId is used on standard Visual Basic ComboBox or ListBox, ItemId is a string value not an integer.

Example
This example shows how to use the AddItem method.

mvGrid1.DictItem(1).ClearListBox
mvGrid1.DictItem(1).AddItem “Joe”,”Joe”

RemoveItem Methodxe "AMC property"
Removes an existing item from the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.RemoveItem(idx)
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox, or mvGrid control

	Idx
	The index location to remove.

Description
This method is used to remove an item from the list. This removes both the display and the ItemId.

Example
This example shows how to use the RemoveItem method.

mvGrid1.DictItem(1).RemoveItem 1
Chapter 6 [image: image41.png]mvButton

The mvButton performs several different functions. It allows the developer to place a button on the form that can read from, or update, all other controls associated with the same Key Field. The different functions that the mvButton can perform include:

	Write
	This mode will write any changes to the MultiValue Database

	Write and Clear

	This mode will write any changes to the MultiValue Database and then clear all the associated controls.

	Clear
	This mode will clear all the associated controls

	Delete
	This will delete the record associated with the Key Field

	Write and Exit
	This mode will write any changes to the MultiValue Database and then exit the current form.

	Quit without Saving
	This mode will just exit the current form without writing any changes to the MultiValue Database.

The mvButton is disabled until there are no associated controls that have their ErrorFlag set to True and all mandatory input has been filled in by the user.
[image: image42.png]

Property pages

mvButton Property Pages

[image: image43.png]
Caption
- Sets the caption of the button.

Key Control Updated
- This list is used to display all the Key Fields that will be updated when the button is pressed. The panel on the left side displays all the Key Fields available, and the panel on the right displays all the Key Fields that are associated with the button.

Button Type
- The Button types allow the developer to decide how the button is to act when pressed.

Keep Locked
- Keep Locked is used to keep the item locked even after it is written back to the host. The controls do a WriteU instead of the a Write to the Host.

Display Graphic
- Each button type has a special graphic that can be displayed along with the caption. If this is checked, then the graphic will be displayed.

Default
- When Windows Key Mapping is in effect (see mvSession for more information) and this is checked, then when the user presses RETURN, this button will be pressed.

Cancel
- When Windows Key Mapping is in effect (see mvSession for more information)and this is checked, then when the user presses ESC, this button will be pressed.

mvButton Host Programs Property Page

[image: image44.png]
The mvButton allows the developer to specify a host BASIC program to run at the following times: Before Write, After Write, Before Clear, After Clear, Before Delete, and After Delete.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

 1 – Error. Will set ErrorFlag property to True

 2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

mvButton Color Property Pages

[image: image45.png]Back Color
- This property is used to set the background color of the control
mvButton Font Property Page

[image: image46.png]
Font
- Specifies the font options for the button.

Help Text

KeyId Propertyxe "AMC property"
The name of a Control that is labeled as the Key Field

Applies To
mvButton controls

Syntax
object.KeyId(idx) {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

	Value
	Returns or Sets the name of the control that is set as the Key Field control.

Description
This property is used to define the name of the control on the form that is set as the key field control. Normally this property is set during design time, but can be changed at run time.

The KeyId is an array of multiple key field names. This allows developer to place one button on the form that can write back to more than one file.

Example
This example shows how to use the KeyId().

mvButton1.KeyId(1) = “CustNo”

mvButton1.RemoveKeyId “CustNo”

mvButton1.AddKeyId “EmpNo”

AddKeyId Method

Adds a new Key Field name

Applies To
mvButton controls

Syntax
object.AddKeyId(KeyId {,Before})
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

	KeyId
	The name of the control that is set as the Key Field control.

Description
This method adds additional names of Key Field controls to the KeyID list.

Example
This example shows how to use the AddKeyId.

mvButton1.KeyId(1) = “CustNo”

mvButton1.RemoveKeyId “CustNo”

mvButton1.AddKeyId “EmpNo”

RemoveKeyId Method

Removes a Key Field name

Applies To
mvButton controls

Syntax
object.RemoveKeyId(KeyId)
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

	KeyId
	The name of Key Field control to remove

Description
Use to remove a specific Key Field control from the KeyId list. This method removes one key field control from the KeyID list at a time.

Example
This example shows how to use the RemoveKeyId.

mvButton1.KeyId(1) = “CustNo”

mvButton1.RemoveKeyId “CustNo”

mvButton1.AddKeyId “EmpNo”

ClearKeyId Method

Clears all names from the KeyId Property

Applies To
mvButton controls

Syntax
object.ClearKeyId()
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

Description
This method completely removes all Key Field controls from the KeyID list.

Example
This example shows how to use the ClearKeyId.

mvButton1.ClearKeyId
mvButton1.KeyId(1) = “CustNo”

mvButton1.RemoveKeyId “CustNo”

mvButton1.AddKeyId “EmpNo”

ErrorFlag, ErrMsg Properties

Flags the control as an Error.

Applies To
mvButton controls

Syntax
object.ErrorFlag {= True/False}

Object.ErrMsg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

	Value
	Returns or Sets an error message.

Description
ErrorFlag flags the control as having an error. True inactivates the button and doesn’t allow the user to go any further until the error is corrected. False allows the user to continue despite the error. The developer sets this property.

ErrMsg is used to store a text version of what the error is.

This control is available at Run-time Only.

Example
This example shows how to use the ErrorFlag and ErrMsg Properties.

mvButton1.ErrorFlag = True

mvButton1.ErrMsg = “Social Security # invalid”

ControlType Propertyxe "AMC property"
Sets the how the Button is to act.

Applies To
mvButton controls

Syntax
object.ControlType {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

	Value
	mvWrite, mvWriteClear, mvClear, mvDelete, mvWriteExit, mvQuit

Description
This property sets how the button is to act:

Type

Description

mvWrite
Writes the item(s) back to the host, but does not clear the data from the associated controls.

mvWriteClear
Writes the item(s) back to the host and clears the data from the associated controls.

mvClear
Only clears the associated controls, ie. Blanks out the data in the controls.

mvDelete
Deletes the Record from the host

mvWriteExit
Writes the item(s) back to the host and then exits the form

mvQuit
Exits the form.

Example
This example shows how to use the ControlType Property.

mvButton1.ControlType = mvWriteClear

BeforeWriteProg, AfterWriteProg Propertyxe "AMC property"
Sets the host programs to call before and after the Write.

Applies To
mvButton controls

Syntax
object.BeforeWriteProg {= Value}

object.AfterWriteProg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

	Value
	Host program name

Description
This property sets the name of the host BASIC program to call before and after the write.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

1 – Error. Will set ErrorFlag property to True

2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

Example
This example shows how to use the BeforeWriteProg Property.

mvButton1.BeforeWriteProg = “CUST.S01.1”

mvButton1.AfterWriteProg = “CUST.S01.2”

BeforeClearProg, AfterClearProg Propertyxe "AMC property"
Sets the host programs to call before and after the Clear.

Applies To
mvButton controls

Syntax
object.BeforeClearProg {= Value}

object.AfterClearProg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

	Value
	Host program name

Description
This property sets the name of the host BASIC program to call before and after the Clear.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

1 – Error. Will set ErrorFlag property to True

2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

Example
This example shows how to use the BeforeClearProg Property.

mvButton1.BeforeClearProg = “CUST.S01.1”

mvButton1.AfterClearProg = “CUST.S01.2”

BeforeDeleteProg, AfterDeleteProg Propertyxe "AMC property"
Sets the host programs to call before and after the Delete.

Applies To
mvButton controls

Syntax
object.BeforeDeleteProg {= Value}

object.AfterDeleteProg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

	Value
	Host program name

Description
This property sets the name of the host BASIC program to call before and after the Delete.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

1 – Error. Will set ErrorFlag property to True

2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

Example
This example shows how to use the BeforeDeleteProg Property.

mvButton1.BeforeDeleteProg = “CUST.S01.1”

mvButton1.AfterDeleteProg = “CUST.S01.2”

WriteU Propertyxe "AMC property"
Specifies if a WriteU is to be done instead of a Write.

Applies To
mvButton controls

Syntax
object.WriteU {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

	Value
	True/False

Description
This property is used to specify if a WriteU is to be done instead of a Write. By default, a Write is done and any locked records are released at that time. A WriteU keeps the record locked until the program is unloaded or another Write is done on the same record.

True indicates a WriteU. False specifies a Write.

Example
This example shows how to use the WriteU Property.

mvButton1.WriteU = False

Caption Propertyxe "AMC property"
Sets the value for controls associated label.

Applies To
mvButton controls

Syntax
object.Caption {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

	Value
	Sets the value to be displayed on the button.

Description
This property sets the value displayed on the Button.

Example
This example shows how to use the Caption Property.

mvButton1.Caption = “Save”

BackColor Propertyxe "AMC property"
Changes the Background color.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.BackColor {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Color.

Description
This property is used to set the background color of the control

Example
This example shows how to use the BackColor property.

mvButton1.BackColor = vbWindowsBackground

Enabled Propertyxe "AMC property"
Sets the control as enabled

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Enabled {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	True/False

Description
This property is used to set control as enabled or disabled. A disabled control means the user cannot click on the button.

True indicates enabled. False specifies disabled.

Example
This example shows how to use the Enabled.

mvButton1.Enabled = True

Font Propertyxe "AMC property"
Sets the Font information for the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Font {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Font Object

Description
This property is used to set the Font information for the control. Font information refers to the Type Style of the control, including size, bold, italics, etc.

Example
This example shows how to use the Font.

mvButton1.Font.Bold = True

Refresh Methodxe "AMC property"
Refresh the data in the control

Applies To
mvButton controls

Syntax
object.Refresh
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

Description
This method is used to refresh the data in the controls.

Example
This example shows how to use the Refresh method.

mvButton1.Refresh
PressButton Methodxe "AMC property"
Simulates the user pressing the Button

Applies To
mvButton controls

Syntax
object.PressButton
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

Description
This method simulates a button being pressed. There are times when a developer wants to automatically cause the Button to be pressed so a write/clear/delete can be done without requiring the user to do so.

Example
This example shows how to use the PressButton method.

mvButton1.PressButton
BeforeWrite, AfterWrite Eventxe "AMC property"
Event fired when the control does a write.

Applies To
mvButton controls

Syntax
object_BeforeWrite()

Object_AfterWrite()
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

Description
This Event allows a developer to run Visual Basic code before and after the Write is done.

Example
This example shows how to use the BeforeWrite Event.

Private Sub mvButton1_BeforeWrite()

‘ if TextBox1 is null, then do not write

If TextBox1 = “” then mvButton.ErrorFlag = True

End Sub

Private sub mvButton1_AfterWrite()

‘ Clears the data in TextBox1

TextBox1 = “”

End Sub

BeforeClear, AfterClear Eventxe "AMC property"
Event fired when the control does a Clear.

Applies To
mvButton controls

Syntax
object_BeforeClear()

Object_AfterClear()
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

Description
This Event allows a developer to run Visual Basic code before and after the Clear is done.

Example
This example shows how to use the BeforeClear Event.

Private Sub mvButton1_BeforeClear()

‘ if TextBox1 is null, then do not clear

If TextBox1 = “” then mvButton.ErrorFlag = True

End Sub

Private sub mvButton1_AfterClear()

‘ Clears the data in TextBox1

TextBox1 = “”

End Sub

BeforeDelete, AfterDelete Eventxe "AMC property"
Event fired when the control does a Delete.

Applies To
mvButton controls

Syntax
object_BeforeDelete()

Object_AfterDelete()
	Part
	Description

	Object
	Object expression that evaluates to a mvButton control

Description
This Event allows a developer to run Visual Basic code before and after the Delete is done.

Example
This example shows how to use the BeforeDelete Event.

Private Sub mvButton1_BeforeDelete()

‘ if TextBox1 is null, then do not delete

If TextBox1 = “” then mvButton.ErrorFlag = True

End Sub

Private sub mvButton1_AfterDelete()

‘ Clears the data in TextBox1

TextBox1 = “”

End Sub

[image: image47.png]
Chapter 7 mvListBox

The mvListBox is similar to the Visual Basic ListBox control (except the mvListBox is bound to a MultiValue database). The mvListBox allows the developer to pull information from a MultiValue host to populate the list. The only the data in the list can be selected by the user. The item, or items, selected will be update to a dynamic array read from the MultiValue Host.

The mvListBox has a label function that allows a developer to assign a label to the control. When the control is moved, the label will go with it. The label can be placed above, below, to the left, or to the right of the actual ListBox. The label is optional. If no label is specified, then only the list box will display.

[image: image48.png]
The mvListBox has basic validation control built into it. A Developer can also specify a Host BASIC program to be run during both validation, and to create “default” information for the control.

The mvListBox can read its list information from a specific record or a select list. The values that are selected by the user are then saved in a multi-value or subvalue dynamic array. The mvListBox can be either single select (allowing the user to pick only a single selection) or multi-select. In multi-select mode, the developer has a choice of the standard list box, or to display check boxes next to each item.

Property Pages

mvListBox Field Settings Property Page

[image: image49.png]
Key Field
- The Key Field is used to define an association with a control specified as a Key Field Control. A Key Field Control is a control that is used to capture a record number or id and read it from the Host.

Field Name
- Field name is used if the developer wants to pull information from a dictionary name at run-time instead of manually entering the information at design-time. The control will pull the Conversion, Justification, Caption, and AMC/VMC/SMC from the dictionary item.

AMC
- This is the Attribute number to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

VMC
- This is the multivalue line to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

SMC
- This is the subvalue line to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

Mandatory
- This check box is used to mark the control as mandatory. When the form is run, then the control will turn the color found in the mvSession property MandatoryColor, and will not allow the item to be saved until this control has a value.

Label
- This control has the option to have a caption or label displayed with it. If a Field Name was entered, the control will use the caption found in dictionary item.

This is helpful for when the control is moved, then the label will be moved with the control.

Label Location
- Location is used to define where the caption is place in relation to the control. The caption can be above, below, left or right of the control.

Label Width
- The Caption Width is the number of characters the developer wants to display in the caption. This is useful when the developer wants to keep all the captions the same side to keep the control from looking jagged.

MultiSelect
- Multi-select is used to gives the user the ability to select more than one item from the list box. If more than one item is selected, then they will be saved as multivalue or subvalue lines depending on the definitions of AMC/VMC/SMC.

Style
- There are two styles that the list box can use. One is the Window’s default, which only highlights the lines that are selected. The other is to supply a check box next to each item. When an item is selected, the check box is checked.

mvListBox List Settings Property Page

[image: image50.png]
List Type
- List type defines the method the list is to be generated. The Different types of methods are: Manual, From record, from Select List, or from an existing Key Field.

“Manual” asks the developer to enter the data to display in the list. It will ask for both the raw value as well as a display value that describes the raw value better.

[image: image51.png]
“From Specific Record” asks the developer for the file name, record name, and the AMC/VMC/SMC position information that list information is to be read from.

[image: image52.png]
“From Select List” asks the developer for the select list to use. It also allows the developer to specify a specific location in the items selected to pull a description from. If the developer wishes to do this, then they will need to fill in the File name and the AMC/VMC/SMC information for the location of the description information.

[image: image53.png]
“From Existing Key Field” is used if the data the developer wants in the list is from a Key Field already on the form. The developer will need to specify the Key Field name as well as the AMC/VMC/SMC locations.

mvListBox Default Property Page

[image: image54.png]Default Program
- This property will allow the developer to call a host BASIC program when the user first enters the control.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

 1 – Error. Will set ErrorFlag property to True

 2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

mvListBox Validation Property Page

[image: image55.png]
Validation Program
- This property will allow the developer to call a host BASIC program when the user first leaves the control.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

 1 – Error. Will set ErrorFlag property to True

 2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

mvListBox Color Property Page

[image: image56.png]
Back Color
- This property is used to set the background color of the control

Fore Color
- This property is used to set the foreground color of the control

Caption Color
- This property is used to set the color of the caption

mvListBox Font Property Page

[image: image57.png]
Caption Font
- Sets the font options for the caption

Font
- Sets the font options for the data portion of the control.

Help Text

AMC Propertyxe "AMC property"
Sets the Attribute Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.AMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the attribute position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the Attribute Mark Counter for the dynamic array the value of this control to be pulled from or placed into. It works the VMC and SMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
VMC and SMC
Example
This example shows how to use the AMC.

mvListBox1.AMC = 1

VMC Propertyxe "AMC property"
Sets the Value Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.VMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the multi-value position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the Value Mark Counter for the dynamic array the value of this control to be pulled from or placed into. It works the AMC and SMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
AMC and SMC
Example
This example shows how to use the VMC.

mvListBox1.VMC = 1

SMC Propertyxe "AMC property"
Sets the SubValue Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.SMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the subvalue position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the SubValue Mark Counter for the dynamic array the value of this control to be pulled from or placed into. It works the AMC and VMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
AMC and VMC
Example
This example shows how to use the SMC.

mvListBox1.SMC = 1

KeyId Propertyxe "AMC property"
The name of the Control that is labeled as the Key Field

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.KeyId {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the name of the Key Field control.

Description
This property is used to define the name of the control on the form that is set as the key field control. Normally this property is set during design time, but can be changed at run time.

Example
This example shows how to use the KeyId.

mvListBox1.KeyId = CustNo

DictItemName Propertyxe "AMC property"
Dictionary Item Name to pull the primary control information from.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.DictItemName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the Dictionary Item Name to pull the primary control information from.

Description
This property is used to return or set the dictionary name to pull primary control information from. The control pulls the AMC, Conversion, Label, and Justification.

This property is read-only at Run Time.

See Also
AMC, Conversion, Label, and Justification
Example
This example shows how to use the DictItemName.

If mvListBox1.DictItemName = “CustNo” then

MvListBox1.Justification = “R”

End If

Mandatory Propertyxe "AMC property"
Sets the control as Mandatory.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Mandatory {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Sets True/False if the control is mandatory.

Description
This property is used set the control as required. If the control has been set to mandatory, then the controls background color turns the color specified in the mvSession control’s MandatoryColor property.

True indicates the control is required. False specifies that the control is not required.

Example
This example shows how to use the Mandatory Property.

mvListBox1.Mandatory = True

ErrorFlag, ErrMsg Properties

Flags the control as an Error.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.ErrorFlag {= True/False}

Object.ErrMsg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets an error message.

Description
This property is used to flag the control as having an error. When the control is flagged as having an error, the mvButton Control associated with the same Key control field becomes inactive.

ErrMsg is used to store a text version of what the error is.

This control is available at Run-time Only.

Example
This example shows how to use the ErrorFlag and ErrMsg Properties.

mvListBox1.ErrorFlag = True

mvListBox1.ErrMsg = “Invalid Customer Number”

CaptionLoc Propertyxe "AMC property"
Sets the location of the label associated with the control

Applies To
mvTextBox, mvComboBox, mvListBox controls

Syntax
object.CaptionLoc {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvListBox control

	Value
	Sets the Location of the Label associated with the control. Valid values are mvLabelLeft, mvLabelRight, mvLabelTop, and mvLabelBottom.

Description
This property sets the location of the label that is associated with the control. The Label can be positioned on the Top, Left, Right or Bottom of the control.

Example
This example shows how to use the CaptionLoc Property.

mvListBox1.CaptionLoc = mvLabelLeft

CaptionWidth Propertyxe "AMC property"
Sets the control’s label width.

Applies To
mvTextBox, mvComboBox, mvListBox, and mvGrid controls

Syntax
object.CaptionWidth {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, or mvGrid control

	Value
	Sets the label width.

Description
This control is used to set the width of the label. If the value is –1 then the controls automatically sizes the label width to the size of the label text.

Example
This example shows how to use the CaptionWidth Property.

mvListBox1.CaptionWidth = 10

CaptionFont Propertyxe "AMC property"
Sets the font information for the label

Applies To
mvTextBox, mvComboBox, and mvListBox controls

Syntax
object.CaptionFont {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvListBox control

	Value
	Sets the label font characteristics.

Description
This control is used to set the label’s font characteristics. This includes the font size, font type, bold, underline, and italics.

Example
This example shows how to use the CaptionFont Property.

mvListBox1.CaptionFont.Bold = True

CaptionColor Propertyxe "AMC property"
Sets the color the label is to be displayed in

Applies To
mvTextBox, mvComboBox, mvListBox controls

Syntax
object.CaptionColor {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvListBox control

	Value
	Sets the color of the label’s text

Description
This control is used to set the color of the label text.

Example
This example shows how to use the CaptionColor Property.

mvListBox1.CaptionColor = vbBlue

Caption Propertyxe "AMC property"
Sets the value for control’s associated label.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, and mvGrid controls

Syntax
object.Caption {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, or mvGrid control

	Value
	Sets the value to be displayed in the control’s associated label.

Description
This property sets the controls associated label. If this is set to null, then no label displays.

Example
This example shows how to use the Caption Property.

mvListBox1.Caption = “Cust #”

DefaultProg Propertyxe "AMC property"
Specify a MultiValue BASIC program to be called at Default.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.DefaultProg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Name of the program.

Description
This property sets the name of the MultiValue BASIC program to call at Default.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

1 – Error. Will set ErrorFlag property to True

2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

Example
This example shows how to use the DefaultProg Property.

mvListBox1.DefaultProg = “CUST.SUB1”

ValidationProg Propertyxe "AMC property"
Specify a MultiValue BASIC program to be called at Validation.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, and mvGrid controls

Syntax
object.ValidationProg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, or mvGrid control

	Value
	Name of the program.

Description
This property sets the name of the MultiValue BASIC program to call at Validation.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

1 – Error. Will set ErrorFlag property to True

2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

Example
This example shows how to use the ValidationProg Property.

mvListBox1.ValidationProg = “CUST.SUB1”

Text Propertyxe "AMC property"
Sets and Returns the value of the dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvGrid, and mvLabel controls

Syntax
object.Text {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the value of the control.

Description
This property is used to set or return the value of the control. When a program evaluates the value of Text, it is evaluating a value from the dynamic array as specified by AMC, VMC, and SMC.

If a value is set to Text, then that value goes directly into the dynamic array and updates the associated information, including other controls. If the control is a Key Field control, then the value input in Text is read from the file.

 Keep in mind that this returns or sets the value in the dynamic array only. If a developer wants to change the value while the user is editing the current control’s data, the InputText property needs to be used. See InputText for more information.

See Also
InputText
Example
This example shows how to use the Text.

mvListBox1.Text = “Joe”

InputText Propertyxe "AMC property"
Sets and Returns the value of the Control

Applies To
mvTextBox, mvComboBox, and mvGrid controls

Syntax
object.InputText {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvGrid control

	Value
	Returns or Sets the value of the control.

Description
This property is used to change the value of the control. It does not update the dynamic array, nor pull information from the dynamic array. It only updates and returns the value the user has input in the control.

This is handy when a developer wants to change the value input in the Change Event or the KeyPress Event.

See Also
Text
Example
This example shows how to use the InputText.

mvListBox1.InputText = mvListBox1.InputText & “ White”

BackColor Propertyxe "AMC property"
Changes the Background color.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.BackColor {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Color.

Description
This property is used to set the background color of the control

Example
This example shows how to use the BackColor.

mvListBox1.BackColor = vbWindowsBackground

ForeColor Propertyxe "AMC property"
Sets the color of the text

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.AMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Color

Description
This property is used to set the color of the control’s text.

Example
This example shows how to use the ForeColor.

mvListBox1.ForeColor = vbBlack

Enabled Propertyxe "AMC property"
Sets the control as enabled

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Enabled {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	True/False

Description
This property is used to set control as enabled or disabled. If the control is disabled, the user cannot edit the information in the control, or click on the control.

True indicates enabled. False specifies disabled.

Example
This example shows how to use the Enabled property.

mvListBox1.Enabled = True

Font Propertyxe "AMC property"
Sets the Font information for the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Font {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Font Object

Description
This property is used to set the Font information for the control. Font information refers to the Type Style for the control, including size, bold, italics, etc.

Example
This example shows how to use the Font.

mvListBox1.Font.Bold = True

Style Propertyxe "AMC property"
Sets the List Box Style

Applies To
mvListBox controls

Syntax
object.Style {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvListBox control

	Value
	VbListBoxStandard, vbListBoxCheckbox

Description
This property is used to set the type of List box to use as input.

The Style property settings for the ListBox control are:

Constant
Value
Description

vbListBoxStandard
0
(Default) Standard. The ListBox control displays as it did in previous versions of Visual Basic; That is, as a list of text items.

vbListBoxCheckbox
1
CheckBox. The ListBox control displays with a checkbox next to each text item. Multiple items in the ListBox can be selected by selecting the checkbox beside them.

Example
This example shows how to use the Style.

mvListBox1.Style = vbListBoxStandard

ListKeyId Propertyxe "AMC property"
Sets the Key Field control to use to fill list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListKeyId {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Key Field name

Description
This property is used to specify the name of the Key Field control that the list is to be populated from. This information is only used when ListFillType is lftKeyField.

Example
This example shows how to use the ListKeyField.

Select Case mvListBox1.ListFillType

Case lftKeyField

mvListBox1.ListKeyField = “mvListBox1”

Case lftRecord

mvListBox1.ListFileName = “temp.file”

mvListBox1.ListRecordName = “emp.0.193”

Case lftSelectList

mvListBox1.SelectList = “select emp”

Case lftManual

mvListBox1.AddItem “Joe”,”123”

mvListBox1.AddItem “Bob”,”456”

End Case

ListFileName Propertyxe "AMC property"
Sets the File Name to use to fill list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListFileName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	File Name

Description
This property is used to specify the name of the file name that the list is to be populated from. This information is used when ListFillType is lftRecord and lftSelectList.

Example
This example shows how to use the ListFileName.

Select Case mvListBox1.ListFillType

Case lftKeyField

mvListBox1.ListKeyField = “mvListBox1”

Case lftRecord

mvListBox1.ListFileName = “temp.file”

mvListBox1.ListRecordName = “emp.0.193”

Case lftSelectList

mvListBox1.SelectList = “select emp”

Case lftManual

mvListBox1.AddItem “Joe”,”123”

mvListBox1.AddItem “Bob”,”456”

End Case
ListRecordName Propertyxe "AMC property"
Sets the record name used to fill list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListRecordName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Record name

Description
This property is used to specify the Record Name that the list is to be populated from. This information is only used when ListFillType is lftRecord.

Example
This example shows how to use the ListRecordName.

Select Case mvListBox1.ListFillType

Case lftKeyField

mvListBox1.ListKeyField = “mvListBox1”

Case lftRecord

mvListBox1.ListFileName = “temp.file”

mvListBox1.ListRecordName = “emp.0.193”

Case lftSelectList

mvListBox1.SelectList = “select emp”

Case lftManual

mvListBox1.AddItem “Joe”,”123”

mvListBox1.AddItem “Bob”,”456”

End Case
ListDictItemName Propertyxe "AMC property"
Sets the Dictionary Item Name that hold the AMC information used to fill list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListDictItemName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Dictionary Name

Description
This property is used to specify the name of the Dictionary Item that the list is to be populated from. This information is only when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListDictItemName.

Select Case mvListBox1.ListFillType

Case lftKeyField

mvListBox1.ListKeyField = “mvListBox1”

mvListBox1.ListAMC = 1

mvListBox1.ListVMC = 2

mvListBox1.ListSMC = 0

Case lftRecord

mvListBox1.ListFileName = “temp.file”

mvListBox1.ListRecordName = “emp.0.193”

mvListBox1.ListDictItemName = “AcctName”

Case lftSelectList

mvListBox1.SelectList = “select emp”

Case lftManual

mvListBox1.AddItem “Joe”,”123”

mvListBox1.AddItem “Bob”,”456”

End Case
ListAMC Propertyxe "AMC property"
Sets the AMC that the information to fill list is from

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListAMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the value of the AMC that the list is to be populated from. This information is only when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListAMC.

Select Case mvListBox1.ListFillType

Case lftKeyField

mvListBox1.ListKeyField = “mvListBox1”

mvListBox1.ListAMC = 1

mvListBox1.ListVMC = 2

mvListBox1.ListSMC = 0

Case lftRecord

mvListBox1.ListFileName = “temp.file”

mvListBox1.ListRecordName = “emp.0.193”

mvListBox1.ListDictItemName = “AcctName”

Case lftSelectList

mvListBox1.SelectList = “select emp”

Case lftManual

mvListBox1.AddItem “Joe”,”123”

mvListBox1.AddItem “Bob”,”456”

End Case
ListVMC Propertyxe "AMC property"
Sets the VMC that the information is to fill list from

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListVMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the value of the VMC that the list is to be populated from. This information is only when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListVMC.

Select Case mvListBox1.ListFillType

Case lftKeyField

mvListBox1.ListKeyField = “mvListBox1”

mvListBox1.ListAMC = 1

mvListBox1.ListVMC = 2

mvListBox1.ListSMC = 0

Case lftRecord

mvListBox1.ListFileName = “temp.file”

mvListBox1.ListRecordName = “emp.0.193”

mvListBox1.ListDictItemName = “AcctName”

Case lftSelectList

mvListBox1.SelectList = “select emp”

Case lftManual

mvListBox1.AddItem “Joe”,”123”

mvListBox1.AddItem “Bob”,”456”

End Case
ListSMC Propertyxe "AMC property"
Sets the SMC that the information is to fill list from

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListSMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the value of the SMC that the list is to be populated from. This information is only when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListSMC.

Select Case mvListBox1.ListFillType

Case lftKeyField

mvListBox1.ListKeyField = “mvListBox1”

mvListBox1.ListAMC = 1

mvListBox1.ListVMC = 2

mvListBox1.ListSMC = 0

Case lftRecord

mvListBox1.ListFileName = “temp.file”

mvListBox1.ListRecordName = “emp.0.193”

mvListBox1.ListDictItemName = “AcctName”

Case lftSelectList

mvListBox1.SelectList = “select emp”

Case lftManual

mvListBox1.AddItem “Joe”,”123”

mvListBox1.AddItem “Bob”,”456”

End Case
ListConversion Propertyxe "AMC property"
Sets the Conversion code to use when creating the display

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListConversion {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property is used to specify the value of the Conversion to use to create the display for the list. When using a Record, Select list, or Key Field, there are times when the developer wants the user to see a display different from the raw data that these Fill types use. ListConversion is any valid Conversion code that works with the OCONV statement.

 This information is only when ListFillType is lftRecord, lftSelectList and lftKeyField.

Example
This example shows how to use the ListConversion.

mvListBox1.ListConversion = “TEMP;X;;1”

List Propertyxe "AMC property"
Sets or returns the display of the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.List(index) {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	List Display

Description
This property is used to set or return the display the users see.

Example
This example shows how to use the List.

mvListBox1.List(1) = “Joe”

mvListBox1.ItemData(1) = “1”

ItemData Propertyxe "AMC property"
Sets or returns the Value for each Display item of the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ItemData(index) {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Value of each Display Item

Description
This property is used to set or return the value of each display item. This is the value that is placed into the dynamic array.

Example
This example shows how to use the ItemData.

mvListBox1.List(1) = “Joe”

mvListBox1.ItemData(1) = “1”

ListCount Propertyxe "AMC property"
The number of items in the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListCount {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Number of items in the list

Description
This property is used to return the number of items in the list.

Example
This example shows how to use the ListCount.

Dim Num as integer

Num = mvListBox1.ListCount

For I = 1 to Num

Print mvListBox1.List(I)

Next I

ListIndex Propertyxe "AMC property"
The Index value for the item selected

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListIndex {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Location in the list

Description
This property returns the index location of the item selected in the list.

Example
This example shows how to use the ListIndex.

Print mvListBox1.List(mvListBox1.ListIndex)

NewIndex Propertyxe "AMC property"
The location of the last item added to list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.NewIndex {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Index location of the last item added to list

Description
This property returns the index location of the last item added to the list.

Example
This example shows how to use the NewIndex.

Print mvListBox1.List(mvListBox1.NewIndex)

SelectList Propertyxe "AMC property"
Sets the Select List to use to fill List from.

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.SelectList {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	SelectList

Description
This property is used to specify the Select list that the list is to be populated from. This information is only when ListFillType is lftSelectList.

Example
This example shows how to use the SelectList.

Select Case mvListBox1.ListFillType

Case lftKeyField

mvListBox1.ListKeyField = “mvListBox1”

mvListBox1.ListAMC = 1

mvListBox1.ListVMC = 2

mvListBox1.ListSMC = 0

Case lftRecord

mvListBox1.ListFileName = “temp.file”

mvListBox1.ListRecordName = “emp.0.193”

mvListBox1.ListDictItemName = “AcctName”

Case lftSelectList

mvListBox1.SelectList = “select emp”

Case lftManual

mvListBox1.AddItem “Joe”,”123”

mvListBox1.AddItem “Bob”,”456”

End Case
ListFillType Propertyxe "AMC property"
Sets the process that the list is going to use to fill itself

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ListFillType {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox or mvGrid control

	Value
	Integer

Description
This property specifies the process the control uses to fill its list:

LftManual
- Uses what ever was manually input during Design Type

LftRecord
- Uses a specific record to populate the list

LftSelectList
- Uses a select list to populate the list

LftKeyField
- Uses a Key Field control to populate the list

Example
This example shows how to use the ListFillType.

Select Case mvListBox1.ListFillType

Case lftKeyField

mvListBox1.ListKeyField = “mvListBox1”

mvListBox1.ListAMC = 1

mvListBox1.ListVMC = 2

mvListBox1.ListSMC = 0

Case lftRecord

mvListBox1.ListFileName = “temp.file”

mvListBox1.ListRecordName = “emp.0.193”

mvListBox1.ListDictItemName = “AcctName”

Case lftSelectList

mvListBox1.SelectList = “select emp”

Case lftManual

mvListBox1.AddItem “Joe”,”123”

mvListBox1.AddItem “Bob”,”456”

End Case
Selected Propertyxe "AMC property"
Sets or Returns whether the value has been selected

Applies To
mvListBox controls

Syntax
object.Selected(index) {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvListBox control

	Value
	True/False

Description
This property is used to set or return if the index value is selected.

Example
This example shows how to use the Selected.

mvListBox1.Selected(1) = True

MultiSelect Propertyxe "AMC property"
Specifies whether more than one item is allowed to be selected

Applies To
mvListBox controls

Syntax
object.MultiSelect {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvListBox control

	Value
	True/False

Description
This property specifies if the user is allowed to select more than one item. If more than one item is allowed, then the item selected is saved as multivalues or subvalues depending on how AMC, VMC and SMC are specified.

If the mvListBox is a CheckBox style, MultiSelect is always on.

Example
This example shows how to use the MultiSelect.

mvListBox1.MultiSelect = True

Refresh Methodxe "AMC property"
Refresh the data in the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Refresh
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

Description
This method is used to refresh the data in the controls.

Example
This example shows how to use the Refresh method.

mvListBox1.Refresh
Clear Methodxe "AMC property"
Clear the data in the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Clear
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

Description
This method is used to remove the data in the controls.

Example
This example shows how to use the Clear method.

mvListBox1.Clear
LoadListBox Methodxe "AMC property"
Loads the data into the List box

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.LoadListBox
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, or mvGrid control

Description
This method is used to load the data into the list box if ListFillType is lftRecord, lftSelectList, or lftKeyField.

Example
This example shows how to use the LoadListBox method.

mvListBox1.ClearListBox

mvListBox1.ListFillType = lftSelectList

mvListBox1.LoadListBox
ClearListBox Methodxe "AMC property"
Clears the List box

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.ClearListBox
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox, or mvGrid control

Description
This method is used to clear the List box.

Example
This example shows how to use the ClearListBox method.

mvListBox1.ClearListBox
mvListBox1.ListFillType = lftSelectList

mvListBox1.LoadListBox

AddItem Methodxe "AMC property"
Adds a new item to the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.AddItem(Display,Itemid)
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox, or mvGrid control

	Display
	This is the value that is to be displayed to the customer.

	ItemId
	This is the value that is placed into the dynamic array.

Description
This method is used to add a new item to the list. The Display is what the user sees. The ItemId is placed into the dynamic array. Contrary to how the ItemId used on standard Visual Basic ComboBox or ListBox, ItemId is a string value not an integer.

Example
This example shows how to use the AddItem method.

mvListBox1.ClearListBox
mvListBox1.AddItem “Joe”,”Joe”

RemoveItem Methodxe "AMC property"
Removes an existing item from the list

Applies To
mvComboBox, mvListBox, and mvGrid controls

Syntax
object.RemoveItem(idx)
	Part
	Description

	Object
	Object expression that evaluates to a mvComboBox, mvListBox, or mvGrid control

	Idx
	The index location to remove.

Description
This method is used to remove an item from the list. This removes both the display and the ItemId.

Example
This example shows how to use the RemoveItem method.

mvListBox1.RemoveItem 1
Default Eventxe "AMC property"
Event fired when User first enters fields

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object_Default(Value as String)
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	The Value returned from the dynamic array.

Description
This Event allows a developer to alter or update the value of the control after it has been extracted from the dynamic array, but before the user is allowed to edit it.

Example
This example shows how to use the Default Event.

Private Sub mvListBox1_Default(Value as String)

Value = Ucase(Value)

End Sub

Validation Eventxe "AMC property"
Event fired when User presses return or moves to the next control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object_Validation(Value as String)
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	The Value to update the dynamic array with.

Description
This Event allows a developer to alter or update the value of the control before it has been replaced in the dynamic array.

Example
This example shows how to use the Validation Event.

Private Sub mvListBox1_Validation(Value as String)

Value = Ucase(Value)

End Sub

ItemCheck Eventxe "AMC property"
Event fired an item is checked

Applies To
mvListBox controls

Syntax
object_ItemCheck(Value as String)
	Part
	Description

	Object
	Object expression that evaluates to a mvListBox control

	Value
	The index location that was checked

Description
This Event allows the developer to do extra processing when an item is checked.

Example
This example shows how to use the Validation Event.

Private Sub mvListBox1_ItemCheck(Value as Integer)

LblDescription = mvListBox1.List(Value)

End Sub

Chapter 8 [image: image58.png]mvCheckBox

The mvCheckBox is similar to the Visual Basic CheckBox control (except the mvCheckBox is bound to a MultiValue database). The mvCheckBox allows a developer to place a standard input control on a form, and have the data be read from, and updated to, a dynamic array.

[image: image59.png]
The mvCheckBox allows the developer to specify the values to be placed into the dynamic array when the checkbox is checked or unchecked. By default, these values are 1 for a checked state and 0 for an unchecked state, but can be changed to any value the developer wishes.
[image: image60.png]
Peroprty Pages

mvCheckBox Field Settings Property Page

[image: image61.png]
Key Field
- The Key Field is used to define an association with a control specified as a Key Field Control. A Key Field Control is a control that is used to capture a record number or id and read it from the Host.

Field Name
- Field name is used if the developer wants to pull information from a dictionary name at run-time instead of manually entering the information at design-time. The control will pull the Conversion, Justification, Caption, and AMC/VMC/SMC from the dictionary item.

AMC
- This is the Attribute number to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

VMC
- This is the multivalue line to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

SMC
- This is the subvalue line to use when saving the information the user entered back to the Host. If there is a Field Name entered, then AMC, VMC and SMC will be disabled.

Mandatory
- This check box is used to mark the control as mandatory. When the form is run, then the control will turn the color found in the mvSession property MandatoryColor, and will not allow the item to be saved until this control has a value.

Caption
- This control has the option to have a caption or label displayed with it. If a Field Name was entered, the control will use the caption found in dictionary item.

This is helpful when the control is moved. The label will then be moved with the control.

Checked Value
- This is the value to use in the dynamic array if the check box is checked.

Unchecked Value
- This is the value to use in the dynamic array if the check box is unchecked.

mvCheckBox Default Property Page

[image: image62.png]
Default Program
- This property will allow the developer to call a host BASIC program when the user first enters the control.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

 1 – Error. Will set ErrorFlag property to True

 2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

mvCheckBox Validation Property Page

[image: image63.png]
Validation Program
- This property will allow the developer to call a host BASIC program when the user first leaves the control.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

 1 – Error. Will set ErrorFlag property to True

 2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

mvCheckBox Font Property Page

[image: image64.png]Font
- Specifies the font options for the control.

mvCheckBox Color Property Page

[image: image65.png]Back Color
- This property is used to set the background color of the control

Fore Color
- This property is used to set the foreground color of the control

Help Text

AMC Propertyxe "AMC property"
Sets the Attribute Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.AMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the attribute position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the Attribute Mark Counter for the dynamic array the value of this control to be pull or place into. It works the VMC and SMC properties to help specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
VMC and SMC
Example
This example shows how to use the AMC.

mvCheckBox1.AMC = 1

VMC Propertyxe "AMC property"
Sets the Value Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.VMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the multi-value position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the Value Mark Counter for the dynamic array that the control’s data is to be pulled from or placed into. It works the AMC and SMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
AMC and SMC
Example
This example shows how to use the VMC.

mvCheckBox1.VMC = 1

SMC Propertyxe "AMC property"
Sets the SubValue Mark Counter for the Dynamic array

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.SMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the subvalue position that specifies the location in the dynamic array that the data is retrieved from or placed into.

Description
This property is used to set the SubValue Mark Counter for the dynamic array that the control’s data is to be pulled from or placed into. It works the AMC and VMC properties to specify the location of the data in the dynamic array.

If the control has a value in DictItemName, then this value is read from the dictionary item upon connecting to the database.

See Also
AMC and VMC
Example
This example shows how to use the SMC.

mvCheckBox1.SMC = 1

KeyId Propertyxe "AMC property"
The name of a Control that is labelled as the Key Field

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.KeyId {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the name of the Key Field control.

Description
This property is used to define the name of the control on the form that is set as the key field control. Normally this property is set during design time, but can be changed at run time.

Example
This example shows how to use the KeyId.

mvCheckBox1.KeyId = CustNo

DictItemName Propertyxe "AMC property"
Dictionary Item Name to pull the primary control information from.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.DictItemName {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets the Dictionary Item Name to pull the basic control information from.

Description
This property is used to return or set the dictionary name to pull primary control information from. The control pulls the AMC, Conversion, Label, and Justification

This property is read-only at Run Time.

See Also
AMC, Conversion, Label, and Justification
Example
This example shows how to use the DictItemName.

If mvCheckBox1.DictItemName = “CustNo” then

MvCheckBox1.Justification = “R”

End If

Mandatory Propertyxe "AMC property"
Sets the control as Mandatory.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Mandatory {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Sets True/False if the control is mandatory.

Description
This property is used set the control as required. If the control is set to mandatory, then the controls background color turns the color specified in the mvSession control’s MandatoryColor property.

True indicates the control is required. False specifies that the control is not required.

Example
This example shows how to use the Mandatory Property.

mvCheckBox1.Mandatory = True

ErrorFlag, ErrMsg Properties

Flags the control as an Error.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.ErrorFlag {= True/False}

Object.ErrMsg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Returns or Sets an error message.

Description
This property is used to flag the control as having an error. When the control is flagged as having an error, then the mvButton Control associated with the same Key control field becomes inactive.

ErrMsg is used to store a text version of what the error is.

This control is available at Run-time Only.

Example
This example shows how to use the ErrorFlag and ErrMsg Properties.

mvCheckBox1.ErrorFlag = True

mvCheckBox1.ErrMsg = “Invalid Customer Number”

Caption Propertyxe "AMC property"
Sets the value for controls associated label.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, and mvGrid controls

Syntax
object.Caption {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Sets the value to be displayed in the controls assocated label.

Description
This property sets the control’s label. If this is set to null, then no label displays.

Example
This example shows how to use the Caption Property.

mvCheckBox1.Caption = “Cust #”

DefaultProg Propertyxe "AMC property"
Specify a MultiValue BASIC program to be called at Default.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.DefaultProg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Name of the program.

Description
This property sets the name of the MultiValue BASIC program to call at Default.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

1 – Error. Will set ErrorFlag property to True

2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

Example
This example shows how to use the DefaultProg Property.

mvCheckBox1.DefaultProg = “CUST.SUB1”

ValidationProg Propertyxe "AMC property"
Specify a MultiValue BASIC program to be called at Validation.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, and mvGrid controls

Syntax
object.ValidationProg {= Value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Name of the program.

Description
This property sets the name of the MultiValue BASIC program to call at Validation.

There are currently 2 formats of Host programs. The first format is the default and requires no special identifer. It uses the following arguments, and is a called subroutine. Just enter the name of subroutine that has the following arguments:

SUBROUTINE PROGRAMNAME(KEY,ITEM,VALUE,STATUS,ERRMSG)

KEY
= this will hold the RecordName for the dynamic array

ITEM
= this will be the dynamic array

VALUE
= the value to be placed in the input

STATUS = 0 – No Error

1 – Error. Will set ErrorFlag property to True

2 – Refresh Data. Will cause the mvControls to refresh the data for the dynamic array.

ERRMSG = an error message if STATUS = 1

This second format gives a bit more control and allows you to define one subroutine and use it in all the controls. The controls will pass the type of action that is calling this program, for example, Default, Validation, or Before Write. To use this type of program place a ‘C:’ in front of the name of a subroutine that uses the following arguments:

SUBROUTINE PROGRAMNAME(MVCONTROL,KEY,ITEM,VALUE,STATUS,ERRMSG)

MVCONTROL<1> = Type (D)efault, (V)alidation, (BW) Before Write

(AW) After Write, (BC) Before Clear, (AC) After Clear

(BD) Before Delete, (AD) After Delete

MVCONTROLS<2> = AMC :vm: VMC :vm: SMC

KEY
= same as above

ITEM
= same as above

VALUE
= same as above

STATUS =same as above

ERRMSG = same as above

Example
This example shows how to use the ValidationProg Property.

mvCheckBox1.ValidationProg = “CUST.SUB1”

CheckedValue Propertyxe "AMC property"
Sets and Returns the value to use when control is Checked

Applies To
mvCheckBox controls

Syntax
object.CheckedValue {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvCheckBox control

	Value
	Returns or Sets the value to use to represent checked.

Description
This property is used to set or return the value to use to represent checked. When the Value is equal to vbChecked, then the value in this property is placed in the dynamic array

Example
This example shows how to use the CheckedValue.

mvCheckBox1.CheckedValue = “Y”

UncheckedValue Propertyxe "AMC property"
Sets and Returns the value to use when control is unchecked

Applies To
mvCheckBox controls

Syntax
object.uncheckedValue {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvCheckBox control

	Value
	Returns or Sets the value to use to represent unchecked.

Description
This property is used to set or return the value to use to represent unchecked. When the Value is equal to vbUnchecked, then the value in this property is placed in the dynamic array

Example
This example shows how to use the UncheckedValue.

mvCheckBox1.UncheckedValue = “N”

Value Propertyxe "AMC property"
Sets and Returns the value of the dynamic array

Applies To
mvCheckBox controls

Syntax
object.Value {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvCheckBox control

	Value
	Returns or Sets the value of the control.

Description
This property tells the developer whether the control is checked or unchecked.

Example
This example shows how to use the Value.

mvCheckBox1.Value = vbChecked

BackColor Propertyxe "AMC property"
Changes the Background color.

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.BackColor {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Color.

Description
This property is used to set the control’s background color.

Example
This example shows how to use the BackColor.

mvCheckBox1.BackColor = vbWindowsBackground

ForeColor Propertyxe "AMC property"
Sets the color of the text

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.AMC {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Color

Description
This property is used to set the color of the control’s text.

Example
This example shows how to use the ForeColor.

mvCheckBox1.ForeColor = vbBlack

Enabled Propertyxe "AMC property"
Sets the control as enabled

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Enabled {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	True/False

Description
This property is used to set control as enabled or disabled. If this property is False (disabled) then users cannot manipulate the control’s data at all.

Example
This example shows how to use the Enabled.

mvCheckBox1.Enabled = True

Font Propertyxe "AMC property"
Sets the Font information for the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Font {= value}
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	Font Object

Description
This property is used to set the Font information for the control. Font information refers to the Type Style of the control, including size, bold, italics, etc.

Example
This example shows how to use the Font.

mvCheckBox1.Font.Bold = True

Refresh Methodxe "AMC property"
Refresh the data in the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Refresh
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

Description
This method is used to refresh the data in the controls.

Example
This example shows how to use the Refresh method.

mvCheckBox1.Refresh
Clear Methodxe "AMC property"
Clear the data in the control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object.Clear
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

Description
This method is used to remove the data in the controls.

Example
This example shows how to use the Clear method.

mvCheckBox1.Clear
Default Eventxe "AMC property"
Event fired when User first enter fields

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object_Default(Value as String)
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	The Value returned from the dynamic array.

Description
This Event allows a developer to alter or update the value of the control after it is extracted from the dynamic array, but before the user is allowed to edit it.

Example
This example shows how to use the Default Event.

Private Sub mvCheckBox1_Default(Value as String)

Value = Ucase(Value)

End Sub

Validation Eventxe "AMC property"
Event fired when User presses return or moves to the next control

Applies To
mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, and mvLabel controls

Syntax
object_Validation(Value as String)
	Part
	Description

	Object
	Object expression that evaluates to a mvTextBox, mvComboBox, mvListBox, mvCheckBox, mvGrid, or mvLabel control

	Value
	The Value to update the dynamic array with.

Description
This Event allows a developer to alter or update the value of the control before it is replaced in the dynamic array.

Example
This example shows how to use the Validation Event.

Private Sub mvCheckBox1_Validation(Value as String)

Value = Ucase(Value)

End Sub

Chapter 9 FAQ – Frequently Asked Questions

Q. How do I share Key Controls and Session Controls across Forms

A. The mvControls allow developer to use Key Controls and Session controls across forms. Since controls are form specific, the form has to be loaded into memory before mvControl Key controls and Session Controls can be accessed.

In Design mode, the form must be loaded in to the display portion of the IDE. The form does not have to be displayed on the screen or the active form, just loaded.

In Run Time, the form must be loaded into memory with the ‘Load’ Visual Basic command or with the {form}.Show command. When the form is unloaded, either by using the ‘Unload” command or the user pressing the ‘Close’ button, the controls will no longer be available to be used by forms.

Q. I’m in Design Mode and in the Key Id dropdown list or the Session Dropdown list, my Key Controls and Session Controls were displayed, but are no longer in the list. What happened?

A. The form that the Key Control or the Session Control was on has been unloaded from memory.

Q. In my Key Id and Session DropDown list, I am getting items with explications points (!) in them. For Example, frmCust!CustNo. What are these?

A. These are controls that are accessible on other forms. It allows developer to reference Session Controls or Key Controls that have been placed on other forms.

Q. What’s the difference between the Validate(Cancel as Boolean) event and the Validations(Value as string) event.

A. The Validate Event is a Microsoft Standard Event. It was Microsoft’s attement to provide a validation section to help developer check to see if the data the user has entered is correct. This event is processed just before you leave the control, but before the next control has received focus. This event is processed after the dynamic array is updated.

The Validation Event is a mvControl specific event that was designed specificly for the mvControls. This event is processed before the Validation host program is called. Both the event and the host program are processed before the dynamic array is updated.

Chapter 10 MvControls Tutorial

This is a step-by-step example of how to use the mvControls with Visual Basic. This tutorial will demonstrate how to use the basic features of the controls. The completed Visual Basic project will:

· show the developer how to create a basic Visual Basic program

· show how the control work together

· show how to use the property pages to speed creation of a Visual Basic program

This tutorial will give you all the code that you need create a Visual Basic program, and will describe what the properties and methods are as they are used.

1) [image: image66.png]Start Visual Basic (either version 5 or 6) and open a new project (of the Standard EXE Type). You will be presented a blank form called Form1.

2) Next you need to add the reference to the mvControls in your project. Select Projects|Components to display the Components dialog box. This box hold all the custom controls that a developer can use in their Visual Basic programs. Find the listing for “Multi-Value Data Bound Controls”

[image: image67.png]
Once the mvControls have been selected, press the OK button and the controls will be displayed in the Visual Basic toolbox.

[image: image68.png]
3) [image: image69.png]Now choose the mvSession control from the toolbox and place it on the form. Right click on the mvSession control and select Properties. This will display the Property Pages used to define the session information. Fill in the connection information and press the OK button.

4) The next step is to add a Key Field to read an item from the DEMOCUST file. Place a mvTextBox on the form. Right click on it and select Properties. This will display the first page of a wizard. Answer each question in the wizard and the basic information needed to make the control function will be updated.

[image: image70.png]The first page of the wizard will ask whether this control will be a Key Field control or not. A Key Field control is used when the developer wants to read a record from a file. The wizard shows two different selections for a Key Field. One is the just “Key Field” and the other is “Key Field from an existing record”.

“Key Field from an existing record” is used when the developer wants to read a record using information in an existing record. For example, the developer is creating an order entry screen and the developer wants the user to be able to edit and update the customer information. Then the customer id would be a “Key Field from an exist record” and the order id would be a “Key Field”

There is a third option on the wizard “Field Position in an existing record”. This is used when the developer wants to access a specific field position in a record associated with one of the Key Field controls.

Since this is the first control on the form, select “Key Field” and press "Next".

Please Note: Do not press RETURN. It will exit the property page.
[image: image71.png]
The next page of the wizard will ask what mvSession control to use. The wizard will display all available session controls to choose from. Since the mvControls allow a developer to combine data from more than one MultiValue database by placing more than one mvSession control on the form, each control must know what mvSession control to use.

The wizard is already prompting the mvSession control that is on the form, so just press “Next”.

[image: image72.png]
The next page in the wizard asks for the file name to read from. Since the control that you are creating is a Key Field control, the mvControls needs to know what file to read the record from. Input the file name or select from the file names listing in the dropdown box.

For this example, enter the file name of ‘DEMOCUST” and press “Next”

[image: image73.png]The next page of the wizard asks about the control’s associated label. The developer has a choice if they want a label or not. If the developer does not want to have a label associated with the control, then leave the Label input blank.

For this example, change the Label to “Key” and press the “Next” button.

[image: image74.png]The next page of the wizard asks how the developer wants the user to get the Ids for the file. The controls have two methods of asking for this information: “User Input” and “Generated from Select List”

“Generated from Select List” is used if the developer wants to restrict the Ids the user can input to values generated from a select list on the host.

“User Input” will allow the user to input the Id manually.

For this example, select “User Input” and press “Next”.

[image: image75.png]
You are now done creating this control. Press the “Finished” button.

If you do NOT press the “Finished” button before press the “OK” button, then none of the information entered will be saved and you will have to run the wizard again to reenter all the information.

[image: image76.png]Once “Finished” is pressed, the following screen will be displayed. The developer can now choose one of the tabs listed to modify the control even more, or press the “Run Wizard” button to run the wizard again.

For this example we will not be modifying this control any more than what the wizard asked for. Press the “OK” button now.

5) Now that we have a Key Field control on the form, we need to add an editable field for the customer’s name. Place another mvTextBox on the form. Right click on it and select Properties. This will display the first page of the wizard. Answer each question in the wizard and the basic information needed to make the control function will be updated.

[image: image77.png]The first page of the wizard will ask whether this control will be a Key Field control or not. Since there is already a Key Field control on the form and no other files will be read in this example, select the third option: “Field Position in an existing record” and Press “Next”.

Please Note: Do not press RETURN. It will exit the property page.
[image: image78.png]The next page of the wizard will ask for name of the Key Field control this field is to be associated with.

Since the mvControls allow more than one Key Field control to be place on a form, each mvControl that is to access a record must know which Key Field the record was read from.

For this example, select the name “mvTextBox1” from the list. This is the name of the Key Field control that was created in step 4. Now press “Next”.

The next page of the wizard will ask for the AMC/VMC/SMC position information.

[image: image79.png]
There are two ways the controls can retrieve this information: from a dictionary item or from the developer manually entering the AMC, VMC, and SMC locations.

If a dictionary name is entered, then when the Visual Basic program is run, the mvControls will read the dictionary information from the host to finish defining the control.

For this example, enter the dictionary name “NAME” and press “Next”.

[image: image80.png]
The next page of the wizard asks about the label. Since a dictionary item is being used, the label used will be pulled from the dictionary item at run-time just like the AMC.

The controls allow the developer to define where the label is to be displayed in relation to the control: top, left, bottom, or right of the control.

For this example, we will keep the default and have the label displayed above the control. Press “Next”

[image: image81.png]You are now done creating this control. Press the “Finished” button.

If you do NOT press the “Finished” button before press the “OK” button, then none of the information entered in the wizard will be saved and you will have to reenter all the information in the wizard.

[image: image82.png]Once “Finished” is pressed, the following screen will be displayed. The developer can now choose one of the tabs listed to modify the control even more, or press the “Run Wizard” button to run the wizard again.

For this example we will not be modifying this control any more than what the wizard asked for. Press the “OK” button now.

6) Now we have a Key Field control and the first editable field on the Visual Basic form. The next step is to add another editable field for the Address. Follow the steps found in Step 5, but instead of use the dictionary name of “NAME”, use “ADDRESS”.

7) Now the form has a Key Field, an editable field for Name and for Address. The next step is to add a mvButton control so any changes made to the data can be saved. Place a mvButton the control on the form. Right click on it and select Properties. This will display the first page of the wizard. Answer each question in the wizard and the basic information needed to make the control function will be updated.

[image: image83.png]
The first page of the wizard will ask for the name of the Key Field control this button is associated with.

For this example, select the name “mvTextBox1” from the list. This is the name of the Key Field control that was created in step 4. Now press “Next”.

[image: image84.png]The next page of the wizard asks about the label for the button. Change the label to “Save” and press “Next”

[image: image85.png]
The next page of the wizard asks how the button is to act. A mvButton can do several things. Write, Clear the associated mvControls, and Delete are just some of it’s actions. See the manual for more detailed information on what each button type does.

For this example we will use the “Write and Clear” button type. This will write the changed data back to the host and clears the data from all the associated controls. Press “Next” to continue.

[image: image86.png]You are now done creating this control. Press the “Finished” button.

If you do NOT press the “Finished” button before press the “OK” button, then none of the information input in the wizard will be saved and you will have to reenter all the information in the wizard.

[image: image87.png]Once “Finished” is pressed, the following screen will be displayed. The developer can now choose one of the tabs listed to modify the control even more, or press the “Run Wizard” button to run the wizard again.

For this example we will not be modifying this control any more than what the wizard asked for. Press the “OK” button now.

8) [image: image88.png]You have just created your first Visual Basic screen using the mvControls. Your form should look something like following:

9) Now we want to create a second form for an Order Entry screen. Select the menu Project|Add Form and select a generic form from the list of new forms. This will place a blank form on your screen.

10) Now choose the mvSession control from the toolbox and place it on the form. Follow the steps in Step 3 to define the session information.

11) Now select a mvTextBox and place it on the form. Right click on it and select Properties. . This will display the first page of a wizard. Answer each question in the wizard and the basic information needed to make the control function will be updated.

[image: image89.png]The first page of the wizard will ask whether this control will be a Key Field control or not.

Since this is the first control on the form, select “Key Field” and press "Next".

Please Note: Do not press RETURN. It will exit the property page.
[image: image90.png]
The next page of the wizard will ask what mvSession control to use. The wizard will display all available session controls to choose from. Since the mvControls allow a developer to combine data from more than one MultiValue database by placing more than one mvSession control on the form, each control must know what mvSession control to use.

The wizard is already prompting the mvSession control that is on the form, so just press “Next”.

[image: image91.png]The next page in the wizard asks for the file name to read from. Input the file name or select from the file names listing in the dropdown box.

For this example, enter the file name of ‘DEMOORDER” and press “Next”

[image: image92.png]The next page of the wizard asks about the controls associated label.

For this example, change the Label to “OrderNo” and press the “Next” button.

[image: image93.png]The next page of the wizard asks how the developer wants the user to get the Ids for the file.

For this example, select “User Input” and press “Next”.

[image: image94.png]You are now done creating this control. Press the “Finished” button.

If you do NOT press the “Finished” button before press the “OK” button, then none of the information input in the wizard will be saved and you will have to reenter all the information in the wizard.

[image: image95.png]Once “Finished” is pressed, the following screen will be displayed. The developer can now choose one of the tabs listed to modify the control even more, or press the “Run Wizard” button to run the wizard again.

For this example we will not be modifying this control any more than what the wizard asked for. Press the “OK” button now.

12) Next we need to add a field for the Customer Id. Select the mvComboBox from the toolbox and place it on the form. Right click on it and select Properties. This will display the first page of a wizard. Answer each question in the wizard and the basic information needed to make the control function will be updated.

[image: image96.png]The first page of the wizard will ask whether this control will be a Key Field control or not.

Since the control we are placing on the form is to be the Customer Id, we may want to edit the customer information on the same screen. To do this, we need to make this control a “Key Field”, but since we also want to update and use the CUST_ID field in the Order file, we use the selection “Key Field from an existing record”.

This allows the data that is entered to be saved in a field position for the Order record, as well as act as Key Field for the Customer file.

Select “Key Field from an existing record” and press "Next".

The next page of the wizard will ask for the name of the Key Field control this field is to be associated with.

[image: image97.png]
Since this data entered into this control will be associated with the Order file, select the name of the control that represents the Key Field for the Order file.

Select the name “mvTextBox1” from the list. This is the name of the Key Field control for the Order file that was created in step 11. Now press “Next”.

[image: image98.png]The next page of the wizard will ask what mvSession control to use when reading from the Customer.

The wizard is already prompting the mvSession control that is on the form, so just press “Next”.

[image: image99.png]The next page in the wizard asks for the file name to read from. Input the file name or select from the file names listing in the dropdown box.

For this example, enter the file name of ‘DEMOCUST” and press “Next”

[image: image100.png]The next page of the wizard will ask AMC/VMC/SMC position information to pull the information from.

For this example, enter a dictionary name of “CUST_NO” and press “Next”.

[image: image101.png]
The next page of the wizard asks about the label. Since a dictionary item is being used, the label used will be pulled from the dictionary item at run-time just like the AMC.

For this example, we will keep the default and have the label displayed above the control. Press “Next”

[image: image102.png]
The next page of the wizard asks how the list box is to be filled. There are two selection in the wizard: “Select List” and “From a specific item in a File”.

“Select List” will use any TCL statement that generates a select list to populate the list.

“From a specific item in a file” will read the contents of an item that the developer specifies.

For this example, we will be using a select list. Select “Select List” and press “Next”.

[image: image103.png]The next page of the wizard asks for the Select list statement. This can be any valid TCL statement that generates a select list.

For this example, we want to select all the Customer Ids from the DEMOCUST file. Enter “SELECT DEMOCUST” and press “Next”:

[image: image104.png]
The next page of the wizard allows a developer to add a conversion code to supply more information in the list. May times, the list that is generated either by a Select list or specific record is raw information, like a customer id.

This conversion code allows the developer to add additional description information next to the id. For example, a customer name or address.

Since this example is using a select list from the DEMOCUST file, enter “TDEMOCUST;X;;1” and press “Next”.

This conversion code will add the customer’s name (or the value in AMC 1) next to the item id.

[image: image105.png]You are now done creating this control. Press the “Finished” button.

If you do NOT press the “Finished” button before press the “OK” button, then none of the information input in the wizard will be saved and you will have to reenter all the information in the wizard.

[image: image106.png]Once “Finished” is pressed, the following screen will be displayed. The developer can now choose one of the tabs listed to modify the control even more, or press the “Run Wizard” button to run the wizard again.

For this example we will not be modifying this control any more than what the wizard asked for. Press the “OK” button now

13) Now that we have a field for the CUST_NO on the form, lets put a mvLabel on the form to display the customer name. Select the mvLabel from the toolbox and place it on the form. Right Click on it and select Properties. This will display the first page of a wizard. Answer each question in the wizard and the basic information needed to make the control function will be updated.

[image: image107.png]
The next page of the wizard will ask for the name of the Key Field control this field is to be associated with.

Since this field is for the customer name, the Key Field control that was created in step 12 is used.

Select the name “mvComboBox1” from the list and press “Next”.

[image: image108.png]The next page of the wizard will ask AMC/VMC/SMC position information to pull the information from.

For this example, enter a dictionary name of “NAME” and press “Next”.

[image: image109.png]You are now done with creating this control. Press the “Finished” button.

If you do NOT press the “Finished” button before press the “OK” button, then none of the information input in the wizard will be saved and you will have to reenter all the information in the wizard.

[image: image110.png]Once “Finished” is pressed, the following screen will be displayed. The developer can now choose one of the tabs listed to modify the control even more, or press the “Run Wizard” button to run the wizard again.

14) The next set of fields that need to be added to the form are the QTY and PROD_NO. These fields are multi-value, so a mvGrid is required. A mvGrid gives the user the ability to enter multi-value information. Select the mvGrid from the toolbox and place it on the form. Right Click on it and select Properties.

[image: image111.png]The first property page displayed on the grid allows a developer to “Add Column” and “Remove Column”. It also allows a developer to scroll between already defined columns so they can rerun the wizard for that column.

If there are no columns defined, the “Run Wizard” button will not be enabled.

Since this is the first column in the grid, press the “Add Column” button. A new column will be added and the first page of the wizard will be displayed.

[image: image112.png]
The first page of the wizard asks the developer for the type of column they are adding. The mvGrid can handle a Text Box, Combo Box, DropDown Box, and a Label.

For the first column, select Text Box and press “Next”.

[image: image113.png]The next page of the wizard will ask whether this control will be a Key Field control or not.

Since this column is to be a QTY field, select “Field Position in an existing record” and press “Next”.

[image: image114.png]The next page of the wizard will ask for the name of the Key Field control this field is to be associated with.

Since this will be QTY field for the Order file, select the name of Key Field that was created for the Order file.

Select the name “mvTextBox1” from the list. This is the name of the Key Field control that was created in step 11. Now press “Next”.

[image: image115.png]
The next page of the wizard will ask AMC/VMC/SMC position information to pull the information from.

For this example, enter a dictionary name of “QTY” and press “Next”.

[image: image116.png]
You are now done creating this column. Press the “Finished” button.

If you do NOT press the “Finished” button before press the “OK” button, then none of the information input in the wizard will be saved and you will have to reenter all the information in the wizard.

[image: image117.png]Once “Finished” is pressed, the wizard will return to the first screen so the developer can add more columns to the grid, or the developer can choose one of the tabs listed to modify the control even more, or press the “Run Wizard” button to run the wizard again

The developer can also move between columns by using the arrow buttons.

15) Now that the QTY field is in place, the steps in Step 14 to add the PROD_NO file, but instead of using the dictionary name QTY, use PROD_NO.

16) Now the form has the fields need for the Order screen, the next step is to add a mvButton control so any changes made to the data can be saved. Place a mvButton the control on the form. Right click on it and select Properties. This will display the first page of the wizard. Answer each question in the wizard and the basic information needed to make the control function will be updated.

[image: image118.png]
The next page of the wizard will ask for the name of the Key Field control this field is to be associated with.

Since the mvControls allow more than one Key Field control to be place on a form, each mvControl that is to access the record read from the Key Field must know which Key Field it is working with.

For this example, select the name “mvTextBox1” from the list. This is the name of the Key Field control that was created in step 4. Now press “Next”.

The next page of the wizard asks about the label for the button. Change the label to “Save” and press “Next”

The next page of the wizard asks how the button is to act. A mvButton can do several things. Write, Clear the associated mvControls, and Delete are just some of it’s actions. See the manual for more detailed information on what each button type does.

For this example we will use the “Write and Clear” button type. This will write the changed data back to the host and clears the data from all the associated controls. Press “Next” to continue.

You are now done creating this control. Press the “Finished” button.

If you do NOT press the “Finished” button before press the “OK” button, then none of the information input in the wizard will be saved and you will have to reenter all the information in the wizard.

Once “Finished” is pressed, the following screen will be displayed. The developer can now choose one of the tabs listed to modify the control even more, or press the “Run Wizard” button to run the wizard again.

We have one more thing to do before the OK is pressed. Click on the tab “mvButton”.

The mvButton tab will display the following screen. You will notice that there are two boxes that display Key Fields. A mvButton can handle more than one Key Field. This way the user only has to press one button to write multiple files back to the host.

The wizard only asked for one of the key fields, but in this example, we want to write back to both the order file and the customer file.

Select “mvComboBox1” from the left panel and press double click on it. This will move it to the right panel, leaving the left panel blank.

Now the both the Key Fields “mvTextBox1”, which is the Order file, and “mvComboBox1”, which is the Customer file, will be write back to the host when ever this button is pressed by the user.

We are now done with this control. Press the OK button.

17) You have just created your second Visual Basic screen using the mvControls. Your form should look something like following:

18) There is only one more screen to create and you will have a finished Visual Basic program. . Select the menu Project|Add Form and select a generic form from the list of New forms. This will place a blank form on your screen.

19) Place two Command buttons on this form. Change the caption of “Command1” to “Customer Entry” and the caption on “Command2” to “Order Entry”. Include the following code, by double clicking on each Command button:

Private Sub Command1_Click()

‘ starts and displays the customer entry screen

Form1.Show

End Sub

Private Sub Command2_Click()

‘ starts and displays the order entry screen

Form2.Show

End Sub

20) The last thing to do is change the default form to Form3. The default form is used by Visual Basic to decide which form will be displayed first when the program runs. Select Product|Product1 Properties and the following screen will be displayed:

The dropdown list “Startup Object” will have a selection for “Form3”. Select that and press the Ok button.

You have now set the default form for the program, and you are finished with your first Visual Basic program using the mvControls.

Now save and run the program to see how the controls work together.

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PaintShopPro ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

_978247160

_978247587

_978256181

_988623437

_978248898

_978248955

_978248500

_978247311

_978247010

_978247086

_978246904

