Introduction to Visual Basic for Applications

Objective

· This workshop is designed to introduce Visual Basic for Applications (VBA)

· Cover the difference between Visual Basic and VBA.

· The student will learn enough to create a simple VBA application

Visual Basic vs. VBA

Visual Basic

· Stand alone product: Standard, Professional, Enterprise

· Can create independent programs and DLL that can run separately from any application

· Can create custom controls that can be used with other programming languages

Visual Basic for Applications (VBA)

· Integrated with the application

· Objects used to control the applications optimized to work with VBA

· Lower overhead when manipulating the application using VBA

· Do not have to purchase separate from the application

Applications that support Visual Basic for Applications

Microsoft Office 95

· Excel

Microsoft Office 97

· Excel (spreadsheet)

· Word (word processing)

· Access (database management and reporting)

· Outlook (email and time management)

· PowerPoint (presentation)

AutoDesk’s AutoCad Release 14

Great Plains Software’s Dynamic Modifier (financial software)

Merrill Lynch’s Private Client Shell (financial software)

How it can be used

· Spreadsheets of Multi-value data (Excel)

· Mail merge of Multi-value data (Word)

· Data Entry (Access and Excel)

· Email control (Outlook)

· Appointment Calendar (Outlook)

· Time accounting (Outlook)

VBA concepts (overview)

VBA is based largely on working with groups of objects that allow you to control different aspects of your application. For example, Microsoft Office.

Basic Concepts:

Object = something you are able to control

For instance, a car

Property = an object’s state of being

In a car, properties would be color, year, or model

Method = An action the object has a predefined definition on what to do

In a car, methods would be start, stop, accelerate

Controlling objects:

Setting properties in your objects:

object.property = expression

Words.Bold = True

Examining properties:

variable = object.propoerty

Cost = Cell.value

Calling Methods:

object.method

ActiveWorksheet.Calculate

Or

Call ActiveWorksheet.Calculate

Object Hierarchy

VBA has broken down each component in Microsoft Office into logical and workable levels.

· Excel object hierarchy

Application

Workbook

Worksheet

Range

Cells

· Word object hierarchy

Application

Document

Range

Words

To set properties, you must specify all related objects from ‘Application’ to the object whose property you wish to change.

Application.Documents(1).Paragraph(3).Range.Words(“Natec Systems”).Bold = True

There are shortcut objects that allow you to shorten the object string when accessing properties. Some are:

ActiveDocument

ActiveWorksheet

ActiveCell

Macro Creator

The macro creator helps you create the code to control your application. In Microsoft Office, the macro creator can be found under Tools|Macro|Macro Recorder. The Macro Recorder records every thing you do in the application you are currently working with from the time your turn it on to the time you turn it off,.

Advantages:

· Record every step you take when turned on

· Creates VBA code that can be manipulated with the Visual Basic Editor

· Allows you to cut and paste code to and from the macro to be used elsewhere

Disadvantages:

· Does not document the macro for you

· Includes code that may not be needed in the macro

· Does not optimize the code for you

Sample of Code created from the Macro Creator - Recorded:

Sub Macro2()

'

' Macro2 Macro

' Macro recorded 2/19/98 by Nathan Rector

'

' Creates a Chart based on the Sales Range.

Range("B33").Select

Charts.Add

ActiveChart.ChartType = xlLineMarkers

ActiveChart.SetSourceData _

Source:=Sheets("Monthly Sales").Range("B4:N12"),_

PlotBy:=xlColumns

ActiveChart.Location Where:=xlLocationAsObject, _

 Name:="Monthly Sales"

With ActiveChart

.HasTitle = False

.Axes(xlCategory, xlPrimary).HasTitle = False

.Axes(xlValue, xlPrimary).HasTitle = False

End With

ActiveSheet.Shapes("Chart 3").IncrementLeft 33.75

ActiveSheet.Shapes("Chart 3").IncrementTop 108#

End Sub

Sample of Code created from the Macro Creator - Edited:

Sub Macro2()

'

' Macro2 Macro

' Macro recorded 2/19/98 by Nathan Rector

'

' Creates a Chart based on the Sales Range.

‘ creates new chart. Make it a line graph.

Charts.Add

ActiveChart.ChartType = xlLineMarkers

‘ Telling the chart which range of cells to use, and to plot by

‘ columns. Use xlRows if you want to plot by rows

ActiveChart.SetSourceData _

Source:=Sheets("Monthly Sales").Range("B4:N12"), _

PlotBy:=xlColumns

‘ tells Excel that the chart is located as an object in the

‘ worksheet “Monthly Sales”

ActiveChart.Location Where:=xlLocationAsObject, _

Name:="Monthly Sales"

‘ Sets a few default values

With ActiveChart

.HasTitle = False

.Axes(xlCategory, xlPrimary).HasTitle = False

.Axes(xlValue, xlPrimary).HasTitle = False

End With

‘ Positions Chart

ActiveSheet.Shapes("Chart 3").IncrementLeft 33.75

ActiveSheet.Shapes("Chart 3").IncrementTop 108#

End Sub

Working with Excel:

Objects (Commonly used Objects)

Application – Represents the entire Microsoft Excel application. The Application object contains:

· Application-wide settings and options (many of the options in the Options dialog box (Tools menu), for example).

· Methods that return top-level objects, such as ActiveCell, ActiveSheet, and so on.

Workbooks(workbook name or number) - A collection of all the Workbook objects that are currently open in the Microsoft Excel application.

Worksheets(worksheet name or number) - A collection of all the Worksheet objects in the specified or active workbook. Each Worksheet object represents a worksheet.

ChartObjects(chart name or number) - object represents an embedded chart in a worksheet.

Charts(chart name or number) - A collection of all the chart sheets in the specified or active workbook.

Range(range name or number) - Represents a cell, a row, a column, a selection of cells containing one or more contiguous blocks of cells, or a 3-D range.

Cells(row, column) - Returns a Range object that represents the cells specified, or all the cells if no row/ column is used, for the worksheet

Common Shortcut Objects

ActiveWorkbook – returns a Workbook object for the workbook that is currently active

ActiveWorksheet – returns a Worksheet object for the worksheet that is currently

 active.

ActiveChart – returns a Chart object for the chart that is currently active

ActiveCell – returns a Range object for the cell that is currently active

Working with Excel:
Common Properties and/or Methods

Call Application.Workbooks(“Book1”).Protect(Password)

· Protects a workbook so that it cannot be modified

Call Application.Workbooks(“Book1”).Worksheet(“Sheet1”).Protect(Password)

· Protects a worksheet so that it cannot be modified

Call Application.Workbooks(“Book1”).Close(SaveChanges as True/False, _

 FileName)

· Closes the Workbook with the option to Save

Call Application.Workbooks(“Book1”).Worksheet(“Sheet1”).Close

· Closes the Worksheet

Call Application.Workbooks(“Book1”).Save

· Saves Workbook

Call Application.Workbooks.Open(Filename)

· Opens Workbook

Call Application.Workbooks.add(Before Sheet?, After Sheet?)

· Creates a new worksheet. New Sheet becomes the active sheet, which allows it be accessed using ActiveWorksheet

Call Application.Workbooks(“Book1”).Worksheet(“Sheet1”).Activate

· This sets ActiveWorksheet to the worksheet named “Sheet1”

ActiveWorksheet.Name = “Worksheet Name”

· Renames the worksheet that is currently active. This name shows up in the worksheets name tag, and is used to access the worksheet when using WorkSheets(Sheet Name).

Worksheets("Sheet1").Range("A1").Value = 3.14159

· Value is used to assign a value or returns a value of the Cell. This example sets the value of cell A1 on Sheet1 to 3.14159.

Worksheets(“Sheet1”).Range(“A1”).IsEmpty = True/False

· IsEmpty returns “True” if the cell is empty and “False” if the cell has a value

Working with Excel:

Useful Code

Function used to insert a new row in a ‘Named Range”.

Private Function InsertRangeRow(RangeName As String, _

 RangeObject As Range) As Integer

 Dim TotalRows As Integer, LastRow As Integer

 ' this routine will insert a new row into a named range and resize

 ' the range to include the new row. It will then return the new

 ' row number for use in the calling program

 With RangeObject

 TotalRows = .Rows.Count ' total rows in range

 LastRow = .Rows(TotalRows).Row ' last row number

 .Rows(LastRow).Insert ' insert before last row

 ' resizes the range

 Names.Add Name:=RangeName, RefersTo:=.Resize(.Rows.Count + 1)

 End With

 ' returns the row# that was inserted

 InsertRangeRow = LastRow

End Function

This subroutine is useful for create a Line chart for a specific ‘Range’

Private Sub CreateLineChart(RowPos As Integer, RangeName as String, _

 SheetName as String, ChartName as String)

 ' this routine is used to create a chart bassed on the sales range

 ‘ just input

 ' adds new chart and name it

 Charts.Add

 ActiveChart.Name = ChartName

 ' defines the type of chart and the range it is to use

 ActiveChart.ChartType = xlLineMarkers

 ActiveChart.SetSourceData _

Source:=Worksheets(SheetName).Range(RangeName), _

PlotBy:=xlColumns

 ' Specifies the location of the chart on the worksheet

 ActiveChart.Location Where:=xlLocationAsObject, Name:=SheetName

 ' assigns the top to the cell and row pos sent from calling program

 Worksheets(SheetName).Activate

 ActiveWorksheet.ChartObjects(1).Top = _

ActiveWorksheet.Rows(RowPos).Top + 10

 ActiveWorksheet.ChartObjects(1).Left = 33

End Sub

Working with Excel:

Inserting Multi-Value Information in Excel – Using Winlink and ViaObjects

Sub macro1()

 Dim wlBase As New WinLink.BaseObject

 Dim wlLink As WinLink.Link

 Dim wlList As WinLink.List

 Dim wlItem As WinLink.DelimitedString

 Dim wlOrderFile As WinLink.RemoteFile

 ' Adds information into a Excel

 ' creates the link to the WinLink Host. It will open the default

 ‘ host. Change the name of the default host if you wish to assign

 ‘ to a different host.

 Set wlLink = wlBase.Links.OpenLink("Default")

 ' opens orders file

 Set wlOrderFile = wlLink.RemoteFiles.OpenFile("ORDERS")

 ' Selects information

 TclCmd = "SELECT ORDERS"

 wlLink.ExecuteCommand TclCmd, CommandGeneratesList:=True

 Set wlList = wlLink.CommandList

 ' starts the readnext

 While wlList.ReadNext

 ' creates the item

 Set wlItem = wlOrderFile.Read(wlList.ItemId)

 TotalSales = CLng(wlItem.Extract(1).Text)

 Dept = wlItem.Extract(2).Text

 ' adds to the Range called Sales

 LastRow = InsertRangeRow("Sales",Worksheets("sheet1")._

Range("Sales"))

 ' reads the department name and adds to row

 Worksheets("sheet1").Cells(LastRow, 1) = Dept

 ' adds the each month read

 Worksheets("sheet1").Cells(LastRow, 2) = CCur(TotalSales) / 100

 Wend

 ' closes and destroys link

 wlLink.CloseAllFiles ' verify that all files are closed

 wlLink.CloseLink ' closes link

 ' destroys base object.

 Set wlBase = Nothing

 ' Creates a chart

 Call CreateLineChart(10, "Sales", "Sheet1", "Chart1")

End Sub

Working with Word:

Object Hierarchy (Commonly used Objects and Properties)

Application – Represents the entire Microsoft Word application. The Application object contains:

· Application-wide settings and options (many of the options in the Options dialog box (Tools menu), for example).

· Methods that return top-level objects, such as ActiveDocument

Documents(Document Name or Number) - A collection of all the Document objects that are currently open in Word.

Range(Begin Character, End Character) - Represents a contiguous area in a document. Each Range object is defined by a starting and ending character position.

Paragraph(Paragraph Number) - A collection of Paragraph objects in a selection, range, or document.

Words(The actual word, or position of word) - A collection of words in a selection, range, or document. Each item in the Words collection is a Range object that represents one word

MailMerge - Represents the mail merge functionality in Word.

Common Shortcut Objects

ActiveDocuments – Returns a Document object for the current object being worked on

Working with Word:

Common Properties and/or Methods

Call Application.Documents(“Document1”).Protect(Type, NoReset, Password)

· Type Required Long. The protection type for the specified document. Can be one of the following WdProtectionType constants: wdAllowOnlyComments, wdAllowOnlyFormFields, wdAllowOnlyRevisions, or wdNoProtection.

· NoReset Optional Variant. False to reset form fields to their default values. True to retain the current form field values if the specified document is protected. If Type isn't wdAllowOnlyFormFields, the NoReset argument is ignored.

Call Application.Documents.Open(“FormLetter1.doc”)

· Opens Document

Call Application.Documents.Close(SaveChanges as True/False)

· Closes document with the option to saving

Call Application.Documents(“MyLetter”).PrintOut

· Prints the document to the printer.

Call Application.Documents(“MyLetter”).Save

· Saves the Document

ActiveDocument.Paragraph(3).Words(“Natec Systems”).Bold = True

· Causes the Words “Natec Systems” to be bold

ActiveDocument.Paragraph(3).Words(“Natec Systems”).Font.Size = 16

· Causes the Words “Natec Systems” to be displayed in the font size of 16

Working with Word:

Code for controlling Mail Merge

Function InsertNewField(FieldName As String, _

DataSourceName As String) As Boolean

 ' This routine is used to add a New Field to the data Source

 ' This assumes the DataSource has been opened. If it has not

 ' been opened in Word, then the program causes an error

 Set myTable = Application.Documents(DataSourceName).Tables(1)

 myTable.Range.Cells.Add BeforeCell:=myTable.Cell(1, 1)

 ' Assignes the cell the field name

 myTable.Cell(1, 1).Range.Text = FieldName

End Function

Private Sub UpdateMergeData(RecordPos As Integer, Data As String, _

FieldName As String, _

DataSourceName As String)

 Dim myTable As Table, CellPos As Integer, ColumnPos As Integer

 ' adds data into a specific field

 ' this will not save the file, just update the active copy

 Set myTable = Application.Documents(DataSourceName).Tables(1)

 For CellPos = 1 To myTable.Columns.Count

 ' finds the column that holds this field name. The program

 ' must strip 2 characters off the end.

 CellValue = myTable.Cell(1, CellPos).Range.Text

 CellValue = Mid(CellValue, 1, Len(CellValue) - 2)

 If CellValue = FieldName Then

 ColumnPos = CellPos

 Exit For

 End If

 Next CellPos

 ' if there was no Column Pos set, then exit program

 If IsEmpty(ColumnPos) Then Exit Sub

 ' if the row does not exist, then create a new row

 If RecordPos > myTable.Range.Rows.Count Or RecordPos = 0 Or _

RecordPos = -1 Then

 myTable.Range.Rows.Add

 RecordPos = myTable.Range.Rows.Count

 End If

 ' updates data

 myTable.Cell(RecordPos, ColumnPos).Range.Text = Data

End Sub

Working with Word:

Code for controlling Mail Merge – continued…

Private Sub DestoryMergeHeader(DataSourceName As String)

 ' clears the header information

 ' clears the data first.

 ClearMergeData DataSourceName

 'destroys the header

 Set myTable = Application.Documents(DataSourceName).Tables(1)

 myTable.Rows(1).Delete

 ' Since there must be a table existing in order for these

 ' programs to work, create a temp table

 Set myRange = Application.Documents(DataSourceName).Range(0, 0)

 Application.Documents(DataSourceName).Tables.Add Range:=myRange, _

NumRows:=1, NumColumns:=1

End Sub

Private Sub ClearMergeData(DataSourceName As String)

 ' Clears all the data out of the datasource file

 ' this will not save the file, just clear the active copy

 Set myTable = Application.Documents(DataSourceName).Tables(1)

 ' deletes information until there is only the heading line left

 While Not (myTable.Rows.Count = 1)

 myTable.Rows(myTable.Rows.Count).Delete

 Wend

End Sub

Working with Word:

Code for controlling Mail Merge – continued…

Private Sub CreateTempDataSource(DataSourceName As String, _

DataSourcePath As String)

 ' Creates the temp DataSource

 On Error Resume Next

 ' Check to see if the temp file exists. If it does, then

 ' open it. It doesn't, then create the file

 Open DataSourcePath & DataSourceName For Input As #1

 If Err Then

 ' Sets the data source to pull from

 ActiveDocument.MailMerge.CreateDataSource Name:= _

 DataSourcePath & DataSourceName, HeaderRecord:="Temp", _

 LinkToSource:=True

 End If

 ' file not already open.. Open

 Documents.Open FileName:=DataSourceName

 ' clears the file to start from scratch

 DestoryMergeHeader DataSourceName

End Sub

Private Sub DestroyTempDataSource(DataSourceName As String)

 ' Destroys the Temp Data Source

 ' close, without saving

 Application.Documents(DataSourceName).Close SaveChanges:=False

End Sub

Working with Word:

Mail Merging Multi-value Information – Using Winlink and ViaObjects

Sub Macro1()

 Dim wlBase As New WinLink.BaseObject

 Dim wlLink As WinLink.Link

 Dim wlItem As WinLink.DelimitedString

 Dim wlCustFile As WinLink.RemoteFile

 ' This macro merges the information from a Customer file to the

 ' Temp Data source so it can be merged into the form letter

 TempDataFileName = "TempMailData.Doc"

 TempDataFilePath = "C:\My Documents\"

 ' creates the link to the WinLink Host and opens Order File

 Set wlLink = wlBase.Links.OpenLink("Default")

 Set wlCustFile = wlLink.RemoteFiles.OpenFile("CUSTOMERS")

 ' Sets the data source to pull from

 Call CreateTempDataSource(TempDataFileName, TempDataFilePath)

 ' adds Fields

 If InsertNewField("FirstName", TempDataFileName) Then Exit Sub

 If InsertNewField("LastName", TempDataFileName) Then Exit Sub

 If InsertNewField("Address", TempDataFileName) Then Exit Sub

 If InsertNewField("City", TempDataFileName) Then Exit Sub

 If InsertNewField("State", TempDataFileName) Then Exit Sub

 If InsertNewField("Zip", TempDataFileName) Then Exit Sub

 ' Reads the Data and adds data

 Set wlItem = wlCustFile.read("5912")

 RowPos = -1

 UpdateMergeData RowPos, wlItem.Extract(1).Text, "FirstName", _

TempDataFileName

 UpdateMergeData RowPos, wlItem.Extract(2).Text, "LastName", _

TempDataFileName

 UpdateMergeData RowPos, wlItem.Extract(3).Text, "Address", _

TempDataFileName

 UpdateMergeData RowPos, wlItem.Extract(4).Text, "City", _

TempDataFileName

 UpdateMergeData RowPos, wlItem.Extract(5).Text, "State", _

TempDataFileName

 UpdateMergeData RowPos, wlItem.Extract(6).Text, "Zip", _

TempDataFileName

 ' closes and destroys link

 wlLink.CloseAllFiles ' verify that all files are closed

 wlLink.CloseLink ' closes link

 ' destroys base object.

 Set wlBase = Nothing

End Sub

About Speaker

Nathan Rector is the owner of Natec Systems. Natec Systems has been providing solutions to the Multi-Value market for 7 years. Nathan is a feature author for International Spectrum’s “Tech Tips” and is the editor and publisher for the technical newsletter “Multi-Value Solutions”.

Natec Systems has worked with integrating Multi-Value data into Windows and the Internet.

For more information on Natec Systems or custom applications, contact:

Natec Systems

1685 Sutter Road

McKinleyville, Ca 95519

Phone: 707-443-6716
Fax: 707-839-4315

Email: nater@northcoast.com
http://www.northcoast.com/~nater
VBA100 – Workshop
Page 15 of 15
Natec Systems

